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Enumerative Combinatorics

Start with a sequence
(fn) — an f17 f27 ‘e
The terms of the sequence could
e count objects in a combinatorial class
e capture the probability that an event occurs
e track the runtime of an algorithm

Goal: capture something interesting about the sequence



Exact Formulas

A THEOREM ON TREES.
By Prof, CAYLEY.

THE number of trees which can be formed with » + 1 given
knots a, 8,9, ... 18 =(n+1)""; for instance n=3, the
number of trees with the 4 given knots «, 8, y, 0 18 4'=16

A. Cayley. A Theorem on Trees. Quart. J. Pure Appl. Math. Vol 23, 376-378, 1889.

It’s unreasonable to expect this to always occur — not
all combinatorial sequences have simple formulas, and
even if they do they can be hard to prove!



Algorithms

M= Matrix(ZZ,2, 2, (1.1 1-0])

def bin_pow(n):

if n == 1: return M

elif n%2 = return bin_pow(n/2)"2

else: return bin_pow((n-1)/2)"2xM
def fib(n): return add(bin_pow(n) [1])

timeit('fib(1076)"') # 208,987 digits long!
25 loops, best of 3: 10.1 ms per loop

Gathering data can be useful for studying sequences, and
conjecturing formulas, but doesn’t tully capture behaviour.



Asymptotics

Instead of exact enumeration, focus on large-scale
behaviour by approximating f, for large n.

4 partitions of ! f 2n
artitionts or n v exX T —
P 4n+/3 P 3

average quicksort cost

. . ~ 2nlogn
on permutation of size n

o)

n!

# unlabelled graphs on n nodes ~



(GGenerating Functions

The generating function (GF) of f, is

F(z) =) fa2"

n>0

Algebraic / differential / functional equations for F form a

data structure for f,

% e Lo

Gn = 7+ walks starting at 0 on n steps in <—I—>




(GGenerating Functions

The generating function (GF) of f, is
S
n>0

Algebraic / differential / functional equations for F form a

data structure for f,

® e Lo

(}n — # walks Startmg at 0 on <—I—> staying in halfspace

| Az + /1 —4z — 1

A




(GGenerating Functions

The generating function (GF) of f, is

F(z) =) fa2"

n>0

Algebraic / differential / functional equations for F form a

data structure for f,

® e Lo

(}n = + walks starting at 0 on <—I—> staying in 37 /4 wedge
| |

| 272 (4z — 1)’ F(2)° + -+ - 4+ (162° =122 + 1)F(2) =1 =0




(GGenerating Functions

The generating function (GF) of f, is
S
n>0

Algebraic / differential / functional equations for F form a

data structure for f,

® e Lo

G” = # walks Startmg at 0 on <—I—> staying in quadrant

| 2*(42 — 1) (42 + 1) F""'(2) + 22(42 + 1)(16z — 3)F"(2)

‘ +2(1122% + 14z — 3)F'(2) + 4(162 + 3)F(2) =0 .




Combinatorial definitions often

automatically translate to GF equations

Analytic

Combinatorics

Philippe Flajolet and
Robert Sedgewick

COMBINATORIAL
G P A0 * | ENUMERATION
TREE-LIKE e
STRUCTURES

F. BERGERON,
G. LABELLE,
P. LEROUX




Generating Function Classes

D-ALGEBRAIC

D-FINITE

ALGEBRAIC

RATIONAL




Analytic Combinatorics

We assume our GF' is analytic at the origin

Z 2" 2" Z S

n>0 n>0

’ g n! 2"
n>0

Analytic combinatorics derives asymptotics of sequences
from the behaviour of their GFs



Fact 1: Cauchy Integral Formula

If F(z)= Z fnz" 1s analytic at the origin then
n>0

F. 1 F(z)
n_27T’L CZn_I_l

dz

where C is a sufficiently small circle around the origin.

C



Fact 2: Deforming Curves of Integration

If C and C’ are simple closed curves and C can be deformed
to C’ in an open set where f(z) is analytic then

[ 1@z = | 1)
C C’

C



Fact 3: Residues O

Assume

e P(z) and Q(2) analytic at z = p

e C is any sufficiently small circle around z = p

J

where the residue is an explicit and computable expression

Then

o0 = (o0)

involving the derivatives of P and @) at z = p



Fact 4: Max Modulus Bound

If f(z) continuous on C then

/c f(z)dz| < length(C) x max[f(2)]

zeC




Alternating Permutations

An alternating permutation is a permutation 7 of odd
length such that m > m < 7wy > .-

The alternating permutations of length three: 213 and 312

_ A2k+1  2k+1
A=) =) (2k +1)!°
k>0




Alternating Permutations

An alternating permutation is a permutation 7 of odd
length such that m > m < 7wy > .-

The alternating permutations of length three: 213 and 312

_ @2k+1  2k4+1 _
A(z) —Z (2k+1)!z = tan z
k>0

ANALYSE MATHEMATIQUE. — Développements de sécx et de tanga. Note de
M. D. Anprg, présentée par M. Hermite.

« On n’a point donné jusqu’'a présent, du moins a ma connaissance, de
développement, suivant les puissances de x, soit de tangx, soit de sécx,
ou les coefficients aient une définition simple, nette, indépendante de tout
autre développement. L’objet de la présente Note est de combler cette

lacune. Comptes rendus de 1'Académie des sciences, 1879



Asymptotics of Alternating Permutations

The Cauchy integral formula implies

1 t
a—n:[z"]tanz:— e

n! 21 Jo 27t




Asymptotics of Alternating Permutations

The Cauchy integral formula implies

1 t
a—n:[z"]tanz:— e

27Ti C Zn+1




Asymptotics of Alternating Permutations

The Cauchy integral formula implies

In 2" tan z = ! tan 2
n! 21 Jo 27t




Asymptotics of Alternating Permutations

The Cauchy integral formula implies

a 1 tan z
= [2"tanz = —
21 Jo 27t

n!




Asymptotics of Alternating Permutations

The Cauchy integral formula implies

1 t
a—n:[z”]tanz:— e

n! 21 Jo 27t




Asymptotics of Alternating Permutations

an, 1 tan z 1 tan z 1 tan z
n!  2m Jeo, z 2m Je, z 2T J | z)=n ?




Asymptotics of Alternating Permutations




Asymptotics of Alternating Permutations




Asymptotics of Alternating Permutations




Asymptotics of Alternating Permutations




Asymptotics of Alternating Permutations

w2l o)) e




Asymptotics of Alternating Permutations

an _1 2 n+l Z 1 (n Odd)
n!l T \m £ (2k + 1)+




Asymptotics of Alternating Permutations

1
2 (2k + 1)+ (r 0dd)




Main Takeaways

e Fach singularity gives contribution

e Those singularities closest to the origin affect dominant
asymptotics

e The contributions of each can be determined by a local analysis
of the generating function

There are many known formulas for different types of singularities

1

&
) :>an

F(z) ~(1—2)° <log . - (logn)”



Topic 2
Diagonals and Smooth ACSV
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Diagonals

Start with a multivariate series

Flz)= Y fuasizi=> fi7

(i1,...,0q)ENd icNd



Diagonals

Start with a multivariate series

Flz)= Y fuasizi=> fi7

(i1,...,0q)ENd icNd

The r-diagonal consists of the coeflicients ( f,,») = fo, fr, for, - - -
Note the coefficient fnr is defined only if nr € N¢

| (1,1) — Diagonal (Main Diagonal)

1

@ery 2£Uy+m2+y2+3$2y+3xy2+y3+@+---

2 - . P s A D B S St DS ENAT AN Seladso i - SRR ST A SOl AN IS TR AN e T




Diagonals

Start with a multivariate series

Flz)= Y fuasizi=> fi7

(i1,...,0q)ENd iceNd

The r-diagonal consists of the coeflicients ( f,,») = fo, fr, for, - - -
Note the coefficient fnr is defined only if nr € N¢

| (2,1) — Diagonal

1

{DHL’ -y + 2zy + x2 + g




Why Diagonals?

e Data structures for interesting univariate sequences
e Uniform asymptotics over most directions (tomorrow)

e Yield combinatorial limit theorems (tomorrow)

We focus on rational (or meromorphic) diagonals

e Diagonal of an algebraic function in d variables is the
diagonal of a rational function in 2d variables



Generating Function Classes

D-ALGEBRAIC

D-FINITE

RATIONAL
DIAGONAL

ALGEBRAIC

RATIONAL




Analytic Combinatorics in Several Variables

= coprime ratio
Assume

converges in a neighbourhood of the origin.

The singularities of F'(z) are given by V :={z: H(z) = 0}.
Singularities closest to the origin are called minimal points.



Analytic Combinatorics in Several Variables

T coprime ratio
Assume

converges in a neighbourhood of the origin.

The singularities of F'(z) are given by V := {z: H(z) = 0}.
Singularities closest to the origin are called minimal points.

| w minimal if and only if H(w) = 0 and there is no z with :.

H(z) =0 and |zj| < |w,]| for all j

_ RS AR Ay I AT e SRR e e e e EEERNEE e e e AR



Analytic Combinatorics in Several Variables

Assume

converges in a neighbourhood of the origin.

The singularities of F'(z) are given by V :={z: H(z) = 0}.
Singularities closest to the origin are called minimal points.

iw Multivariate Cauchy Integral Formula

; 1 dz
nr — F a
!f / (277)4 /C (=) znr+1 nr € N

where C is a product of circles |z;| = ¢

D e A e e e e A D T e A A S e A e D A e S B e S T it ST S =




Difhiculties of ACSV

One variable rational (or meromorphic) functions
e I'ind finite set of singularities closest to the origin

e Add their asymptotic contributions

In more than one variable
e Set of minimal points is infinite
e Singular set can have nontrivial geometry (self-intersections)

e Can deform domain of integration around singular set!



Smooth ACSV

Simplest case: Denominator H and its partial derivatives don’t
simultaneously vanish.

Then critical points are defined by

H=0, r=nH, =rzH, ((2<j<d)

—-= pDartial derivative



Smooth ACSV

Simplest case: Denominator H and its partial derivatives don’t
simultaneously vanish.

Then critical points are defined by

H=0, r=nH, =rzH, ((2<j<d)

Critical points: Asymptotic approximations can be made
Minimal points: Cauchy integral can be deformed close to

The asymptotic contribution of a minimal critical point w depends
on an explicit matrix M = My, built from partial derivatives of H



Surgery ACSV Theorem (Pemantle Wilson 2003)

Suppose that
H=0, rj=nH, =rzH, ((2<j<d)

admits a minimal solution w € C2. If

e no other singularity has the same coordinate-wise modulus as w

e H, (w)and det M are non-zero,

then

= W (nrg)1=D/2 (27)(=D/2 geg (M) /2 ( —Gw) ) +0 (l>>

wded(W n

If there are a finite number of singularities with the same
coordinate-wise modulus as w, all satistying these conditions,
then we can add their asymptotic contributions.



The Hessian Matrix

If H,,(w)+# 0 then we can write zq = ¢(z) near w



The Hessian Matrix

If H,,(w)+# 0 then we can write zq = ¢(z) near w

M is the (d —1) x (d —1) Hessian matrix at 0 = 0 of

¢(0) =logg (wlewl, . ,wd_lewd—l)



The Hessian Matrix

If H,,(w)+# 0 then we can write zq = ¢(z) near w
M is the (d —1) x (d —1) Hessian matrix at 0 = 0 of

¢(0) =logg (wlewl, . ,wd_lewd—l)

f Chain Rule implies )
| V;ij + Ui,j o ijUi,d — V;;Uj,d -+ ‘/;‘/}Ud,d ) 75]

| Vi + V2 + Ui — 2ViUs g + VU g i=

w;w; H,, . (W)

and V; =r;/ryg

where Ui,j: wdH (W)
Zd




The Hessian Matrix

If H,,(w)+# 0 then we can write zq = ¢(z) near w

M is the (d—1) x (d —1) Hessian matrix at 0 = 0 of

¢(0) =logg (wlewl, . ,wd_lewd—l)

def getHes(H,R,vars,CP):
dd = len(vars)

V = zero_vector(SR,dd)
U = matrix(SR,dd)

M = matrix(SR,dd-1)
for j in range(dd):

VIjl = R[j]1/R[-1]
for i in range(dd):
U[i,j] = vars[i]*vars[jlxdiff(H,vars[i],vars[j])/vars[-1]/diff(H,vars[-1])
for i in range(dd-1):
for j in range(dd-1):
M[i,j] = VIil*V[j] + UI[i,j] - V[jl*U[i,-1] - VI[i]l*U[j,-1] + VI[il*VI[jlxU[-1,-1]
if i == j: MI[i,j] = M[i,j] + VI[il
return M.subs(CP)



A First Example

1 i+ 7\
F(m,y):l_aj_y:.Z( 7; )W

Critical Point Equations in Direction r = (1,1)
l—-2z—-—y=20 — T = —Y

Unique Minimal Critical Point
1 1
(x*ay*) — (57 5)

glx)=1—x so ¢(f) =log (1 —2e”) and M = ¢"(0) =2

Hessian



A First Example

1 i+ 7\
F(m,y):l_aj_y:.Z( 7; )W

Critical Point Equations in Direction r = (1,1)
l—-2z—-—y=20 — T = —Y

Unique Minimal Critical Point

) = (5:3)

n

Asymptotics




(

N -+ Sn

A First Example

1 i+ 7\
F(m,y):l_aj_y:.Z( 7; )W

Critical Point Equations in Direction r = (r,s)
l—2—y=0 — ST = —TY

Unique Minimal Critical Point

: ) r s
LxyYsx) = ;
Y r+s T+ s

Asymptotics

) = ey = (

n (A S

7“—|—s)m (7“—|—s)sn Vr+s



Bi-Clover Quiver
(Ramgoolam, Wilson and Zahabi 2020)

The generating function for the chiral operators in the large N
limit of the bi-clover quiver gauge theory is

1
Hk21(1 —zk — y*)

F(x7y) —



Bi-Clover Quiver
(Ramgoolam, Wilson and Zahabi 2020)

The generating function for the chiral operators in the large N
limit of the bi-clover quiver gauge theory is

1
Hk21(1 — xk —yF)

F(:I?,y) —

Note: F(z,y) = G(z,y)/(1 —z — y) where




Proof Idea (Bivariate)

Suppose w = (a,b) € R2>O satisfies the conditions of the theorem.

Cauchy Integral Formula implies

1 dx dy
rn,sn — ) F 9
Jrm. (27i)? /x—a (/yb 0) :vm“ysnﬂ)




Proof Idea (Bivariate)

Suppose w = (a,b) € R2>0 satisfies the conditions of the theorem.

Cauchy Integral Formula and Max Modulus Bound imply

1 dx dy
rn,sn — ) F 9
Jrm. (27i)? /x—a (/yb 0) :vm“ysnﬂ)

! dz dy
(274)? /Iazla (/yb+€ F(x,y) a;?“n+1ysn+1> + small error

* May need to localize



Proof Idea (Bivariate)

Suppose w = (a,b) € R2>0 satisfies the conditions of the theorem.

Cauchy Integral Formula and Max Modulus Bound and
Residues imply

- small error

Flz, y)) dr

xrn—l—l

1
frn,sn — ( Res
|z|=a

omi y=g(z) Y"1

where ¥y = g(x) on V

* May need to localize



Proof Idea (Bivariate)

Suppose w = (a,b) € R2>0 satisfies the conditions of the theorem.

Cauchy Integral Formula and Max Modulus Bound and
Residues imply

1 G(x,g(x)) dx

Jrn.sn = = : - small error
271 z|=a Hy(aj,g(x)) :Ern—klg(aj)sn—l—l

where ¥y = g(x) on V

* May need to localize



Proof Idea (Bivariate)

Suppose w = (a,b) € R2>0 satisfies the conditions of the theorem.

Cauchy Integral Formula and Max Modulus Bound and
Residues and the change of variables x = ae® imply

frm.sn = / A(0)e "9 40 + small error

—T

Because w is critical this is a saddle-point integral

* May need to localize



Critical vs Minimal Points

Minimal points make the proof relative easy, but make checking the
conditions difficult.

Problem: Dealing with minimality (and points with same
coordinate-wise modulus) is hard. It also considers spurious points.

e pas e

(1+20)(1—2z—y) still has critical point (1/2,1/2)

1F($7y) —

- But now there is a curve of singularities

{(/2,-1/2) : 0 € (—m, 7]}

l\wh 2] = Jy| = 1/2

t




Critical vs Minimal Points

Minimal points make the proof relative easy, but make checking the
conditions difficult.

Problem: Dealing with minimality (and points with same
coordinate-wise modulus) is hard. It also considers spurious points.

Solution: Reduce importance of minimality. Only critical points
really matter when computing asymptotics.

Key: Generically there are a finite set of critical points, encoded by
algebraic equations, even though there are infinite minimal points.



Main Theorem of Smooth ACSV
(Baryshnikov Pemantle 2011 / BMP 2021 )

Suppose that
H — O, ’rj21Hzl — lejHZj (2 <.] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

2] — W () D2 (27)1=D/2 et (Ag) =1/ (w;g("z’zv) +0 (%))

In other words: We can study the (hopefully finite) set of critical
points and check which are minimal, ignoring everything else



Main Theorem of Smooth ACSV
(Baryshnikov Pemantle 2011 / BMP 2021 )

Suppose that
H — O, ’rj21Hzl — IrlszZj (2 <.] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

2] — W () D2 (27)1=D/2 et (Ag) =1/ (w;g("gv) +0 (%))

z"y"] ~




Main Theorem of Smooth ACSV
(Baryshnikov Pemantle 2011 / BMP 2021 )

Suppose that
H — O, ’rj21Hzl — lejHZj (2 <.] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

G(2)
H(z)

nr]

|z = w ™ (nrg)1=H/2 (27)1=D/2 det (M) ~1/2 ( —G(w) ) L0 (l))

wded(w n

If there are a finite number of critical points with the same
coordinate-wise modulus as w, all satistying these conditions,
then we can add their asymptotic contributions.



Help Proving Minimality

' Multivariate Vivanti-Pringsheim Theorem

1 If f; >0 for all i then w € V with positive coordinates is
| minimal if and only if H(tw) # 0 for all ¢t € (0,1).




Help Proving Minimality

' Aperiodic Expansions

,' If H(z)=1— Z pnz” where (p,) is a sequence of
| neNd |
" nonnegative numbers with span,{n & N?: pn # 0} = Z° ‘5'
. then every minimal point has positive real coordinates ’

1 1
l—z—y 2 — e*Ty
1 1

’ 1 -tz +y) l—x+y



Walks 1n an Orthant

Uniform diagonal expression for walk models in N¢ whose step

sets S C {£1,0}% are symmetric over every axis.

(1+21)--- (14 2q) i
AT Zdt " 7 S(Z) B ’
[( 1 ) ] 1_t(21---zd)S(Z) 2;
| _ O
= t.s P
| 7 ’00
: - “’ 0‘¢$§
20 [ | &‘ ":"0
i Ll = - 30 0 L
- 1 ] | I_I ": /
20- 998
10 = | IJ T ’\’0"0

10




Walks 1n an Orthant

Uniform diagonal expression for walk models in N¢ whose step

sets S C {£1,0}% are symmetric over every axis.

~1/2
# walks ~ |S|"-n~42. ((s(l) . 8(d)> r=4/2\8(4/2 4 O (%))

M. and Mishna, 2016

30~ 50

| 1 0
- | B »’m

. 00
$.9.9, 0
KL ZK §
| 0 O
20 | | ? “ ’QQ
(S

P20
K5

— 30 —
=i LT
O m | ',0‘0
[ | | [ ] 0‘:’
] Wl 207 NS
0 | \»"0’0

10




Lonesum Matrices (Khera, Lundberg, and M.)

A lonesum matrix is a 0 — 1 matrix that is uniquely
determined by its row and column sums.

OO HE 9O
Lo (o 1 L OE DO 9
o 1) (o) OO e

YES



Lonesum Matrices (Khera, Lundberg, and M.)

A lonesum matrix is a 0 — 1 matrix that is uniquely
determined by its row and column sums.

Noncommutative Biology: Sequential Regulation of Complex Networks
Letsou and Cai. PLOS Computational Biology, 2016.

Together with the fact that the reachable configurations are a subset of the staircase matri-
ces, this implies that the'reachable configurations and the lonesum matrices are in fact the
same set, and we have

Theorem 3 The number of reachable configurations in the (n, m) ratchet network with I, =
L, = 1 and threshold 1 scales as the poly-Bernoulli numbers B," = B ™.



Lonesum Matrices (Khera, Lundberg, and M.)

A lonesum matrix is a 0 — 1 matrix that is uniquely
determined by its row and column sums.

Let f(t) =t/(1 —e')log(l —e™").
Theorem. If n,k — oo such that n/k — A > 0 then

a " "h " nlk!

By =
* Vk  \/2mae—be~? 4 ae= — ab]

(1+0 (k™ 1)),

where a = f~1(\) and b= f~1(1/))



Proof Idea of Main Theorem

Approach 1: Cones of Hyperbolicity (BP 2011)
o Criticality says something about the tangent space to V
e Use this to locally deform around non-critical minimal points

e Glue these deformations together with roots of unity

Approach 2: Intersection Classes (BMP 2022)
e Use geometric arguments to “flow” cycle on V

e More on this approach tomorrow



ACSV Complexity Results

Suppose that G(z) and H(z) have coefficients < 2" and degree ¢

Suppose also that the power series of F'(z) has non-negative coefficients

Theorem (M. and Salvy, 2016)

Under generic and verifiable assumptions one can find all

minimal critical points, and compute asymptotics in
O(hg***™®) bit operations.

= o A e R R S e s DR e e e R O Rt S e S e A - aSi Slear 4 : SR SRS RS e R D R IR I AT S I D T e e siaaiianir s

Can remove non-negativity assumption, with increased complexity:.

- Theorem (M. and Salvy, 2021)

Under verifiable assumptions, one can find minimal critical

9d+4 23d)

points in O(hg bit operations.

, : n D AR S At ISR ST~ Seladvmit _ ” o




ACSV Complexity Results

' Theorem (M. and Salvy, 2021)
. Under verifiable assumptions, one can find minimal critical
9d+493d) hit operations.

points in O(hg

General Idea:
- Assumptions imply finite number of critical points

- Use a univariate (Kronecker) representation to encode them

- Reduce everything to polynomial equalities and inequalities
with bounded degrees and coefficient sizes

- Use numerical methods with sufficient precision to test minimality



Irrationality of Zeta(3)

Exercise

Be the first in your block to prove by a 2-line argument
that ¢(3) is irrational.”

@ Given the definitions of @ show thata,b,,_{ —a,_ b,
= b3 and b, = O(a") with a = (1 +4/2)*. Conclude that
¢(3) is irrational because log a > 3.

A Proof that Euler Missed, Alfred van der Poorten

=S (3) (1) = e :

1—t(1+2)1+y) 1+ 2) (1 +y+ 2 +yz+ zyz)



Irrationality of Zeta(3)

Exercise |
Be the first in your block to prove by a 2-line argument
that ¢(3) is irrational.”

@ Given the definitions of @ show thata,b,,_{ —a,_ b,
= b3 and b, = O(a") with a = (1 +4/2)*. Conclude that
¢(3) is irrational because log a > 3.

A Proof that Euler Missed, Alfred van der Poorten

A, U, PRINT := DiagonalAsymptotics (numer (F) ,denom(F),[a,b,c,z],u,k, useFGDb):
K. U;
( 2 u— 366 )"' o [ _2u—366
1 (34u+1458 ) Y7 | -96u— 4192

2 TRETE . [Rootof ( 2> — 366 Z — 17711, -43.27416997969.
' St i



Restricted Factors in Words

The number of balanced binary strings with no substring equal to
10101101 and 1110101 is the main diagonal of

1 — ¢ — Y + :172y3 _ xSyS _ $4y4 _ ZEByG + ZE4y6

(> ASM, := DiagonalAsymptotics (numer (F) ,denom(F) ,indets (F) ,u,k,true,u-T,T):
ASM;
1 ([ 84 W +240u'° — 285" — 1548 1" — 2125 1" — 1408 1" + 255 u'* + 756 1" + 2509 1'% + 2856 ' + 605 1'® + 20201 + 12334 — 1760 u’ +
2 || -126”" + 300" + 258 0! +5000'7 + 4404 —1020"° — 378 4" — 1544 0" — 2142 "% — 550 0" — 2222 "7

— 1644 1° + 2860 1" — 1848 ' + 123
[ 8417° +240u™ — 285" — 1548 4’7 — 2125 4™ — 1408 '° + 2551 + 756 1" + 2509 u'> + 2856 u'' + 605 u'° + 2020 %° + 1233 1" — 1760 u" + S
‘ 1621 — 6121 — 9021’ — 61617 + 254 1" + 548 ' + 2054 "% + 2156 ' + 898 u'?

\l

+2268u° +2462u° — 20881 + 1312u° —

— 2551 — 190" — 190’ - 461 461 ' 6280’ 133" +374u° 161" — 3841 +1461° — 138" —285u° — 401’ + 91 1° — 30U + 3:

+ 756 1" + 2509 1'% + 2856 ' + 605 1'® + 20201 + 12331 — 17601 + 92415 — 49214° — 675u" + 6321° — 2491° + 241+ 16) )



Cambridge Stwdies in Advanced Mathematics

Analytic

Combinatorics
Stephen Melczer in Several
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An Invitation
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Implementations

e Sage package of Alex Raichev for computing asymptotic
contributions of (already certified) minimal critical points

- Package was not well maintained. Currently being fixed and
extended to certify minimality by Hackl, Selover, and Wong.

e Julia implementation using Homotopy Continuation to
certify minimality by Kisun Lee and Josip Smoli¢.

e Maple implementation of Melczer and Salvy for certitying
minimality.

e Sage code developed for An Invitation to Analytic
Combinatorics (available on melczer.ca/textbook)



http://melczer.ca/textbook

Conclusion



Conclusion

e Analytic combinatorics is beautitul and powertful

e Analytic combinatorics in several variables is beautiful
and powerful

e You don’t need much more than univariate analytic
combinatorics to get interesting results

e To remove some hard-to-check hypotheses we need to
bring in new techniques and rely on some advanced
mathematics



Lecture 2 (Tomorrow)

e Uniform asymptotics in varying directions
e Limit theorems

e (Some) non-smooth singular sets

e Morse-theoretic framework

e New applications

e And more!



THANK YOU!

An Invitation to Analytic Combinatorics
melczer.ca/textbook

melczer.ca/ALEA22



