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Analytic Combinatorics in Several Variables

We study the r-diagonals of

Fa) = g = 3 fid

ieNd
Assume H(z) = H, (z) =---= H,.,(z) = 0 has no solution

Then the singular variety V = {z € C*: H(z) = 0} is smooth



Analytic Combinatorics in Several Variables

We study the r-diagonals of

G(z i
F(z) = H((z)) = i%\; fiz

Assume H(z) =H, (z) =---= H,,(z) =0 has no solution

Then the singular variety V = {z € C*: H(z) = 0} is smooth

Minimal Points: Coordinate-wise smallest singularities

Critical Points: Solve H =0, r;jz1H, =riz;H,, (2<7<d)



Main Theorem of Smooth ACSV

Suppose that
H — O, TjZlel — lejHZj (2 <] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

G(2)
H(z)

nr]

|z = w ™ (nrg)1=H/2 (27)1=D/2 det (M) ~1/2 ( —G(w) ) L0 (l))

wded(w n

If there are a finite number of critical points with the same
coordinate-wise modulus as w, all satistying these conditions,
then we can add their asymptotic contributions.
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Higher-Order Terms

Under the assumptions of the Main Theorem of Smooth ACSV, for
any M € N there is an expansion

M
z""|F(z) = W_”r(QWnrd)(l_d)/Q det(M —1/2 (Z Ci(ran)” (an))
7=0

with each C; explicitly computable from the derivatives of G
and H up to order 2(j + 2) evaluated at w



Higher-Order Terms

Under the assumptions of the Main Theorem of Smooth ACSV, for
any M € N there is an expansion

2" F (z) = w "™ (2mnrg) = 9D/2 det(M) /2 (Z Ci(rgn)™7 + 0O (n_M_l)

i=0

e (PO v0)) |
2T+ (0 1 5)!

C;=(-1 >

0<0<2j

I and | |
' — = (\/7\\/’67’0, g (\/7\\/'67’8))
g(we)H,, (we? g(we'?))

P(9) =

= 10

¥(8) = log <g§‘£vv% )> i(F0)frg— (1/2)0- M- 67




def smoothContrib(G,H,r,vars,CP,M,qg):
# Preliminary definitions
dd = len(vars)
field = SR

tvars = list(var('t%d'$i) for i in range(dd-1)) Sage COde available On

dvars = list(var('dt%d'$i) for i in range(dd-1))

# Define differential Weyl algebra and set variable names melczer.ca/textbOOk/

W = DifferentialWeylAlgebra(PolynomialRing(field,tvars))
WR = W.base_ring()

T = PolynomialRing(field, tvars).gens()

D= list(W.differentials())

# Compute Hessian matrix and differential operator Epsilon Note: Requires g eXpliCitly

HES = getHes(H,r,vars,CP)

HESinv = HES.inverse()

v = matrix(W,[D[k] for k in range(dd-1)])

Epsilon = -(v * HESinv.change_ring(W) * v.transpose())(0,0]

# Define quantities for calculating asymptotics

tsubs = [v == y.subs(CP)*exp(I*t) for [v,t] in zip(vars,tvars))]

tsubs += [vars[-1l]==g.subs(tsubs)]

P = (-G/g/diff(H,vars[-1])).subs(tsubs)

psi = log(g.subs(tsubs)/g.subs(CP)) + I * add([r[k])*tvars[k] for k in range(dd-1)])/r([-1]
v = matrix(SR,[tvars[k] for k in range(dd-1)])

psiTilde = psi - (v * HES * v.transpose())[(0,0]/2

# Recursive function to convert symbolic expression to polynomial in t variables
def to poly(p,k):
if k == 0:
return add([a*T[k)"int(b) for [a,b] in p.coefficients(tvars(k])])
return add([to_poly(a,k-1)*T[k]"int(b) for [a,b] in p.coefficients(tvars(k])])

# Compute Taylor expansions to sufficient orders

N = 2*M

PsiSeries = to_poly(taylor(psiTilde,*((v,0) for v in tvars), N),dd-2)
PSeries = to_poly(taylor(P,*((v,0) for v in tvars), N),dd-2)

# Precompute products used for asymptotics
EE = [Epsilon”k for k in range(3*M-2))]
PP = [PSeries] + [0 for k in range(2*M-2)]
for k in range(1l,2*M-1):

PP(k] = PP[k-1]*PsiSeries

# Function to compute constants appearing in asymptotic expansion
defs ClhGinsy)s
return (-1)"j*SR(eval_op(EE[1+j),PP[1l]))/(2"(1+j)*factorial(l)*factorial(l+j))

# Compute different parts of asymptotic expansion

var('n')

ex = (prod([1l/v*k for (v,k) in zip(vars,r)]).subs(CP).canonicalize_radical())”n

pw = (r[-1]*n)"((1-dd)/2)

se = sqgrt((2*pi)”(1l-dd)/HES.det()) * add([add([Clj(l,j) for 1 in range(2*j+1)])/(r[(-1)*n)"j for j in range(M)])

return ex, pw, se.canonicalize radical()



Vanishing Terms

If G(w) # 0 then higher order terms give more accuracy

1 1 1 1
n, n — " - JI | O( —7/2)
S (ﬁnw 8ymn3/2 " 128y /mn52 7\
If G(w) =0 then higher order terms may give dominant asymptotics

T — 2y° 1 3 o
"y" = 4" | | O( /2)
Y <4ﬁn3/2 32/ 0\ )

In the (rare) worse case, all terms may be zero!

nomn T—Y 1"
[a:y]l " y_0<n—M> for all M > 0




Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE, NW, SE,SW} = >< is

{(aﬁyt)"} (1+z)(1+vy) N % | %

1 — teyS(z,y)

where S(af,y):a;y—kg—k%qtﬁ.



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE, NW, SE,SW} = >< is

{(ajyt)”} (1+z)(1+vy) N % | %

1 —tZL’yS(CC,y)
where S(x,y) = xy + o+ 2+ ﬁ

The critical points are

(L1g) (LLg) (L-13) (1L-1%)



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE, NW, SE,SW} = >< is

{(ajyt)”} (1+z)(1+vy) N % | %

1 —tZL’yS(CC,y)
where S(x,y) = xy + o+ 2+ ﬁ

The critical points are
(L13) (L17) (L-L3) (=1,-1,3)

Numerator Vanishes



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE, NW,SE,SW} and ending on the z-axis is

(1—2z?)(1+y) 2 (1+(=1") 4"
1 — texyS(x,y) T n?

(zyt)"]

The critical points are still



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE, NW,SE,SW} and ending on the z-axis is

(1—2z?)(1+y) 20+ (=) 47
1 — texyS(x,y) T n?

(zyt)"]

The critical points are still

(L1g) (-LL3) (L-Lg) (=L-13)

Numerator Vanishes Numerator Vanishes
to First Order to Second Order



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE,NW,SE, SW} and ending at the origin is

[(xyt)n} (1 — 4 )(1 — Y ) N 4(1 + (_1)77,) . 4"

1 —txyS(x,y) 7 ns

The critical points are still



Lattice Path Enumeration

The number of walks in N? starting at the origin and taking n

steps in {NE,NW,SE, SW} and ending at the origin is

[(xyt)n} (1 — 4 )(1 — Y ) N 4(1 + (_1)n) . 4"

1 —txyS(x,y) 7 ns

The critical points are still

(L3 (-LL3) (L-Lg) (=L-13)

Numerator Vanishes to Second Order
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Main Theorem of Smooth ACSV

Suppose that
H — O, ’rj21Hzl — IrlszZj (2 <.] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

2] — W () D2 (27)1=D/2 et (Ag) =1/ (w;g("gv) +0 (%))



Main Theorem of Smooth ACSV

Suppose that
H — O, TjZlel — lejHZj (2 <] < d)

admits a finite number of solutions. If
e there is exactly one minimal solution, w € C¢
e H, (w) and det M are non-zero,

then

G(2)
H(z)

nr] =w " (nrg) ' m72 (2m) 1 D/2 det (M) T/ ( —Gw) j+O0 (1»

[Z wded(w n

If r varies in some compact set where the above conditions
are still satisfied then the error term in this asymptotic
estimate can be uniformly bounded.



Irrational Directions

Recall from Lecture 1 that

2y 1 N <r+s>m <r—|—s>8n N

LYy
l—2—y r S V2rsmn



Irrational Directions

Recall from Lecture 1 that

27y 1 N (T+s)m (fr—l—s)m VT + s

T
/ l—2—y r s V2rsmtn

Only makes sense if

rn. sn € N Valid for any r,s > 0



Irrational Directions

Recall from Lecture 1 that

2y 1 N <r+s>m <r+s>3” N

x
/ l—2—y r S V2rsmn

What if we put (r,s) = (m, 1) into the approximation?
What does this correspond to?



Irrational Directions

Recall from Lecture 1 that

2y 1 N <r—ks>r”<7w+s>8” N

X
7/ l—z—y r S V2rsmn

What if we put (r,s) = (m, 1) into the approximation?
What does this correspond to?

Compare to f,x» Wwhere [z] = closest integer to z



I

Plot of

f[’nﬂr] 70

asymptotics when (r,s) = (m, 1)

L2+
° ¢ ¢ =
1.14 o ¢« o o ® *
10 * * ) .. ° ® ®
0.9- § = & 8 )
PN o .
0.8 -
07 7] I | 1 1 |
0 20 40 60 80 100



Irrational Directions

Recall from Lecture 1 that

2y 1 N (r+s>m (r+s)3” N

x
/ l—2—y r S V2rsmn

If A,, is this approximation with (r,s) = (m,1) then

[nmT]—nm
T
~ An
f[nw],n (7‘(‘ i 1)

N——

bounded factor
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Smooth Variation of Coeflicients

A

Fix direction m = (m, 1) and suppose that for all r = (1, 1) in a neighbourhood
of m there is a smoothly varying minimal critical point w(r) such that

1. no other singularity has the same coordinate-wise modulus as w(r)
2. H,,(w(r)) and G(w(r)) are non-zero

3. the matrix My (y) 18 non-singular

If § = 8(n) is a sequence in N9~! with each coordinate of |§ — nm| in o(n?/3) then

(8 — nm)?" M~1(§ — nm)
2n

~ _(§—nm)

W exp [—

fon ~ wmp(1=d)/2 (‘G(W)(QW)(ld)/Q>

wded (W)\/ det ./\/l
where w = w(m) and M = My,.



Smooth Variation of Coeflicients

A

Fix direction m = (m, 1) and suppose that for all r = (1, 1) in a neighbourhood
of m there is a smoothly varying minimal critical point w(r) such that

1. no other singularity has the same coordinate-wise modulus as w(r)
2. H,,(w(r)) and G(w(r)) are non-zero

3. the matrix My (y) 18 non-singular

If § = 8(n) is a sequence in N9~! with each coordinate of |§ — nm| in o(n?/3) then

(8 — nm)T M~1(s — nm)
2n

~ _(§—nih)

W exp [—

fA o W—nmn(l—d)/Z ( _G(W) (27.‘.)(1—d)/2 )

wded (W)\/ det ./\/l
where w = w(m) and M = My,.



Local Central Limit Theorem
Suppose that in some direction (m, 1) there is a minimal critical point w = (1, 1)
with ¢ > 0 such that

1. no other singularity has the same coordinate-wise modulus as w

2. H, (w) and G(w) are non-zero

3. the explicit matrix M is non-singular

Then as n — oo the coefficients of [27|F(z) approach a multivariate normal
distribution with density

G(w) (2mn)(1=d/2 (s — nm)? M~1(s — nm)
wded (W) \/det M =P 2n

Un(s) = —

Flr,y,z) =0+ --- 4+ (O + Uz + Oy + oy + -+ - - )2 e



LLocal Central Limit Theorem

Suppose that in some direction (m, 1) there is a minimal critical point w = (1, t)
with ¢ > 0 such that

1. no other singularity has the same coordinate-wise modulus as w
2. H,,(w) and G(w) are non-zero

3. the explicit matrix M is non-singular

Then

sup n@D)/2
scZd—1

£ f - Vn(s)‘ 50
as n — 00, where

~ G(w) (27rn)(1=4)/2 B
n(®) = L, (W) Vet M eXp{

(s — nm)" M~1(s — nm)
2n




CLT for the Euclidean Algorithm

If ek,n denotes the number of pairs of polynomials fy, f1 € F,[x]
such that deg(f1) < deg(fo) = n and the Euclidean algorithm
performs k divisions then

F(u,z) = Z p 2" =

n,k>0

1
1 —pz—pp—1)uz

f(z)=z0+ ... 41 g(z) =2z"9 + ... +2 1 runs
1.0 -

0.8
0.6 -
0.4 -

0.2 1

0.0 ———— — ——

A running count of the number of divisions performed when running the Euclidean algorithm on pairs of polynomials in Z3|z| with the
higher degree polynomial monic of degree 500, compared to the expected distribution from the limit curve.



Cycles Lengths in Permutations w/ Restricted Positions

P. Diaconis: “My latest paper has an explicit multivariate
rational generating function. I'm pretty sure a CLT holds...”

Permanental generating functions and sequential
importance sampling

Fan Chung?, Persi Diaconis”, Ron Graham %*

& Dept. of Mathematics, UCSD, United States of America
b Dept. of Mathematics, Stanford University, United States of America
¢ Dept. of Computer Science and Engineering, UCSD, United States of America

ARTICLE INFO ABSTRACT
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Received 17 December 2018 ing functions for enumerating permutations with restricted
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positions keeping track of various statistics. The method in-
volves evaluating permanents with variables as entries. These
are applied to determine the sample size required for a novel
sequential importance sampling algorithm for generating ran-
Dedicated to Joseph Kung dom perfect matchings in classes of bipartite graphs.
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Cycles Lengths in Permutations w/ Restricted Positions

Fix ¢t € N.
Let F;(n) be the set of permutations o € S, with i —t <o(i) <i+1

Theorem 1. If a;(0) denotes the number of i cycles in o,

1
F(x,z) = Z x2(7) ;7 —

1l —xiz—x922 — - — g 2D
>0 1 2 t+1

oc€Fi(n)



Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w
2. H,,(w) and G(w) are non-zero

3. the explicit matrix M is non-singular




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .
2. H,,(w) and G(w) are non-zero

3. the explicit matrix M is non-singular




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .

2. H,,(w) and G(w) are non-zero ‘

3. the explicit matrix M is non-singular




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .

2. H,,(w) and G(w) are non-zero ‘

3. the explicit matrix M is non-singular '




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .

2. H, (w) and G(w) are non-zero '

3. the explicit matrix M is non-singular ’




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .

2. H,,(w) and G(w) are non-zero ‘
3. the explicit matrix M is non-singular .

1
F(l,xo,...,0441,2) =
(7 ) » i1 ) 1—2—513222—"'—513t_|_12t+1

t=1




Cycles Lengths in Permutations w/ Restricted Positions

Conditions for a CLT to hold

1. no other singularity has the same coordinate-wise modulus as w .

2. H, (w) and G(w) are non-zero .
3. the explicit matrix M is non-singular .

1
F(l,xo,...,0441,2) =
(7 ) » i1 ) 1—2—33222—"'—33t_|_12t+1

t =2



Bivariate Multinomial ML-Degree

The maximum likelihood degree (ML-degree) is a measure of
the complexity of the statistical mazrimum likelihood method for
estimating parameters in a multivariate probability model with
missing data.

e RIS 0y p—— Gios ol oo P pios - A

- It ML(n,k) denotes the ML-degree for multinomial random variables |
X1 €{l,...,n} and X5 €{1,...,k} then |

* n, k e~ TY

"y
Z ML(n, k) nlkl

n,k>0

PO — e - AN D S I At BRI i el - .

e T 4+e V-1




Bivariate Multinomial ML-Degree

The maximum likelihood degree (ML-degree) is a measure of
the complexity of the statistical mazrimum likelihood method for
estimating parameters in a multivariate probability model with
missing data.

NSRS S e gios o o ) agios o o agioa SR A

| For all fixed K > 0,

2(k—n/2)2
2log 2)" 2~ n(i-log2)
sup ( og' ) ML(n — k, k) >
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Higher Order Poles

What if there are solutions to

H(z)=H, (z)=---=H



Higher Order Poles

What if there are solutions to

has no solutions.

Then V ={z: H(z) =0} = {z : P(z) = 0} is still a manifold
Minimal points unchanged, and critical points defined by P

The residue computation in the Main Theorem of Smooth ACSV
has a minor modification to account for the higher order pole



Higher Order Poles

What if there are solutions to

has no solutions.

gias o e s agios o 0 o agios

If the usual assumptions hold with the smooth critical point

equations for P then
(—1)"G(w)
(k= 1) (wa Pz, (w))

i P P R I e e R e S S et R R S e R S S R SO RN e T s CROCERIE P SRR TR R o~ SROLERG RTINS PSRN SRS

| e = Wt O (27 7D/ det (M) T, - (1+0 ()]




Non-Smooth Points

More pathologically, H(z) = H,,(z) =---= H,,(z) = 0 if V self-
intersects at non-smooth points.

This does not happen generically, but does come up in
combinatorial examples.

I’d estimate 75% of naturally occurring combinatorial examples
have V smooth.



Non-Smooth Points

More pathologically, H(z) = H,,(z) =---= H,,(z) = 0 if V self-
intersects at non-smooth points.

This does not happen generically, but does come up in
combinatorial examples.

I’d estimate 75% of naturally occurring combinatorial examples
have V smooth.

Simplest Non-Smooth Case:

F(CIZ,y) —

where ¢ and /{5 are linear.



Hyperplane Example

Let
Fla.y) = G(z,y)
7 61 (xay)KQ(xay)
2
for li(x,y) =1 aj;_ / and Uo(x,y) = 3332_ J

Then V =5 US US> for smooth sets

S ={l1(x,y) =0} \ S1.2 -

Sy = {la(z,y) =0} \ S1.2
81,2 — {gl(xvy) — gQ(xvy) — O} — {(17 1)}




Hyperplane Example

We compute critical points on each stratum

On & bz, y) = sx(l)a(2,y) —ry(b)y(z,y) =
(_ Y r £ 2s

has the unique solution o =
r—+ S

On S Ur(z,y) = sx(l2).(z,y) —ry(la)y(z,y) =0

1 4r 3
has the unique solution oo = <_ 4 s) r# 3s
r+s\ 3’

On &1 2 the only point 015 = (1,1) is trivially critical



Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point

We can compute asymptotics as before



Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point

We can compute asymptotics as before

Fron = /|Z|_X{:}




Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point
We can compute asymptotics as before

frmsn = /|z|_x® - A—*Q




Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point
We can compute asymptotics as before

frmsn = /|z|_x® - A—*Q




Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point

We can compute asymptotics as before

frn,sn — /
|z|=a




Case 1: 0< —— <2/3
r—+ S

The point 01 is a smooth minimal critical point
We can compute asymptotics as before

3-S5 (pt-s r+s \ N 3
f L ( r'(s: ) ) ) 4 ﬁ(r + S)E 2 0 l
rn,sn T \/ns \(r =2 5)\/r n




r
r—+ S

The point 09 is a smooth minimal critical point

Case 2: 1/3 <

We can compute asymptotics as before



r
r—+ S

The point 09 is a smooth minimal critical point

Case 2: 1/3 <

We can compute asymptotics as before




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error



Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error

Fron = /|Z|_x@




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error

Frmen = /|z|—x© —/Izzl—Q
+/|zz|*® _[Q

*




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error

Frmen = /|z|—x© —/Izzl—Q
+/|zz|*® _[Q

:" {\
1
'
'




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error




Case 3:2/3< —— < 3/4

r+ S

The non-smooth point o7 9 1s the only minimal critical point

Only now can we introduce three new integrals with small error

frnsn =12+ O(t") for some 0 < 7 < 1




20(q+b)a 0\ " n—1/2 4v/2(a+b)3/2
3a+0gapb v abm(2b—a)

?/
2 b

12

3a(a+b)a+b> ! n—1/2 9(a+b)3/2

4a-+bqapd v 2abm(a—3b)
L
a

Asymptotics in direction r = (a,b)



Non-Generic Directions

It r=2s then o1 =012
We can take a residue over one, but not both, lines



Non-Generic Directions

It r=2s then o1 =012
We can take a residue over one, but not both, lines

[x2nyn]F($’y) ~ __6 A(y)

e~ Wdy +0(r"), 0<7<1

Uy R-+ze Yy




Non-Generic Directions

It r=2s then o1 =012
We can take a residue over one, but not both, lines

"y | F(z,y) =6+ O(n™")




2(atb) "™ 172 4v/2(a+b)*
3a+bgapb Vabr(2b—a)

6/
6

12

3a(a+b)a+b) " n—1/2 9(a-+b)3/2

4a+bqapb v 2abm(a—3b)
_
a

Asymptotics in direction r = (a,b)



Beyond Smoothness

How do we generalize?
Need to properly define critical points

Their smooth definition is constructed to give saddle-point integrals

{ Alternative definitions

|

Assume H(w) = 0 but (VH)(w) # 0. The following are equivalent |

e W IS critical in the direction r

o (Vo)(w) = AM(VH)(w) where ¢(z) = z"

, o T = A(ViggH)(W) where (Vio,H)(w) = (lezl (W),...,wded(w))

l o the differential of ¢ restricted to the manifold V vanishes at w

_ S i S




Multiple Points

In general, partition V into a finite collection of smooth strata
Need the strata to fit together nicely

Simplest Case

where
o (VHp)(w)#0 ifwin V,={z: Hi(z) =0}
e VHy, (W),...,VHy (w) linearly independent if w eV, N---NVy,

This is an example of the transverse multiple point case



Strata

Under these assumptions, for any S = {kq1,...,ks} we define the flat

and the stratum

V=58 US> US: 5




Strata

Under these assumptions, for any S = {kq1,...,ks} we define the flat

Vo = Vi ke = Vi, NN Vg,

and the stratum

Ss=Vs\ |J Vr

V1rC Vs

- w € Sgis a critical point in the direction r if

I':)\l




Strata

Under these assumptions, for any S = {kq1,...,ks} we define the flat

Vo = Vi ke = Vi, NN Vg,

and the stratum

Ss=Vs\ |J Vr

V1rC Vs

sy s g Pcmen,,

("The critical points on Sg are defined by the vanishing of Hy, ,.. ..
| and the (s 4 1) x (s + 1) minors of
‘ [ (Viog Hi, ) ()

(Viog H, ) (w)

.
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Contributing Points

Suppose W is a minimal critical point on the stratum S;

If (0H;/0z,)(w) # 0 then define

Vj:

(ViegHj)(w) ( w1 (0H;/0z1)(w) wa(0H;/0za)(W) )
wi; (OH; /0zi; ) (W) \wi,; (0H; [0z, ) (W)™ wy; (0H; /02, ) (W)

It turns out v; € R

- If r=Avy+ -+ A\gvs where each Ay > 0 then w |

‘1s called a contributing point.

R TR RAEE

Note: Smooth minimal critical points are always contributing!



Multiple Point Asymptotics

Suppose w is a minimal contributing singularity of

G(z)

F(z) = H.(z) - Hy,(2)

with no other singularity with the same coordinate-wise modulus.

If w lies on a stratum of codimension s then there exist explicit
matrices My, and T'y, such that

_ _ _ _ G(w) 1
_ nr, (s—d)/2 (s—d)/2 1/2 | -
for =W "'n (27rg) det(Mw) ( Tt T O ( ))

n

when det My, # 0



Proof Idea

Locally, V looks like a union of s hyperplanes near w
1) Introduce asymptotically negligible integrals
2) Take residues in s dimensions

3) Approximate a (d — s)—dimensional saddle-point integral



Proof Idea

Locally, V looks like a union of s hyperplanes near w
1) Introduce asymptotically negligible integrals
2) Take residues in s dimensions

3) Approximate a (d — s)—dimensional saddle-point integral

3 G(w)
o — nr . I O n
j / i | det 'y, | (7")

(ViegH1)(w)\ |
. i

where 0 < 7 < |[w™'| and Ty =

]




Quadrant Walks on Weighed Stepsets

bl
b/a /
Free
kO
\ a Directed ol
- g e : Axial
1/a k-
a/b
Directed
1 e
yt*(y — b)(a — z)(a + z)(a’y — ba?)(ay — bx)(ay + bx)
atb3 (1 _ tCEy (é + ax + Z_Z 1 Z_gj) )(1 . ac)(l . y) Tran}:i_t3iona|
0 1 hy

Courtiel, M., Mishna, and Raschel (2017)
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Whitney Stratifications

In general, we partition V into a finite collection of strata that are
manifolds satistying the Whitney conditions

The critical points of F'in direction r are the critical points of
¢(z) = z" restricted to each of these manifolds

{ Fact: The exist effectively computable algebraic sets

;

V=FoDF1 D -DF, =

‘such that the connected components of Fj, \ Frt1 form a Whitney]
Stratlﬁcatlon

e Gak e o a2 NGND ATy

( Corollary All crltlcal pomts deﬁned by algebralc (m)equatlons
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Height Functions

For large n the modulus of

is captured by
h(z) = —rilog|z1| — - — rqlog|zq]
Idea 1: We start with points of C with high height

Try to push them down as far as possible while avoiding V

Idea 2: Use Leray residues to reduce to integral ‘on’ V
Try to push down resulting intersection cycles



Pushing Down Cycle

Start with the expression

2n\ 1 / 1 dxdy
n) (2mi)2 wlme jylme 1 — @ —y Tyt

Expand |y| until you hit V and take a residue

2n\ -1 / dx
n ) 2w wlme TP — )t

Then flow the cycle |z| = ¢ to points of lower height




Maximum height = 2.408

N
n
J

—
— Uh b
lll’l]l!ll!ll’lll]

1

S
l

Flow of x = a + b starting with |x| = 1/10

1 1
with h(a,b) = —log |z| — log |l — z| = 5 log(a® + b%) — 5 log((1 — a)* + b%)



We get stuck at saddle-point

2.5—

n
Illll’llll,llll

[

e
h

j




Morse theory

Actually performing these flows is inefficient!
But we can predict where they get stuck — at critical points!
And we will get saddle-point integrals!

Morse theory: Topological study of manifolds via height functions
Stratified Morse theory: Study of varieties (and more)

Problem: Our height functions are not proper
Solution: Ignore parts not contributing to dominant asymptotics




3

Flows of |x| =1/10 on V(1 —x — zy) and V(1 — z — y — 2%y)



Morse Theory For Asymptotics
(Baryshnikov, M. and Pemantle 2021)

There exist checkable algebraic conditions, under which the results of
Morse theory hold and we can write

frr = Z kwWw(n) + asymptotically negligible terms

WwWEcerit

where kw € Z

Uw(n) is a local integral

Cannot always determine kKw directly, but knowing they are integers

we can sometimes use rigorous numerical analytic continuation



Two Complementary Approaches: Approach #1

1
ider F Y, 2) =
Consider (w7 LyY Z) 1 — (UJ +x+y+ Z) —+ 27wﬁlj‘y2

There are three critical points, with asymptotic contributions

®,(n) =81"-O(n) (w=x=y=2=1/3)
11621 — i1/30803599 \ (—7 — 4iv/2)" .
Pal) = ( 20420 ) e T (Ww=r=y=2=-1/34iv2/3)
11621 + i1/30803599 \ (—7 + 4iv/2)" .
Pal) = ( 20420 ) AaE - (Ww=r=y=z=-1/3-iV2/3)

Our Morse result immediately implies

frnnn = k1P1(n) + ko®a(n) + k3P3(n)




Two Complementary Approaches: Approach #2

1
ider F(w,x,y,z) =
Consider (w L,y Z) 1_(w+$+y+z)+27waﬁyz

The diagonal coeflicients satisty a linear recurrence
(n? 4+ 6n* + 12n 4 8)cpia + (14n° + 63n* + 97n + 51)cpyr + (810 + 243n* 4 243n + 81)c, = 0

whose solutions form a complex vector-space with basis

nin =S5 (140 (7)) v = S (1e0 (7))

SO fn,n,n,n = 0'1\111(TL) -+ 0'2\112 (n)

Now the o; € C but we can rigorously approximate them to
any desired accuracy using numeric analytic continuation



Two Complementary Approaches: Combined

The sequence in question is .~ -~ ~ ™ Unknown
& integers
frnnn =K1P1(n) + KaPa(n) + K3P3(n)
and fnnmn =01Y1(n)+ 02Pa(n)
' Approximated

> Complex Numbers

By combining methods we can exactly determine
asymptotics.

Arbitrary approximation cannot prove equalities without bounds!



Two Complementary Approaches: Combined

The sequence in question is .~ / - Unknown

integers
fonnn =r1P1(n) + Ka®2(n) + K3P3(n)
and fn,n,n,n — 0’1\111(’]?,) —+ 0'2\112(’”)
\ Approximated

> Complex Numbers

This process shows

k1 = 0.000...
Ko — 2.999. ..
K3 — 2.999. ..

to hundreds of decimal places in seconds (on my laptop)



Two Complementary Approaches: Combined

The sequence in question is -~ - ~ ™ Unknown
integers
frnnn =K1P1(n) + KaPa(n) + K3P3(n)
and fn,n,n,n — 0’1\111(’]’2,) —+ O'Q\IJQ(TL)
\ Approximated

> Complex Numbers

Theorem 2.5. The diagonal coefficients a, n nn of the function in Example 2.4 have an asymptotic expan-
ston in decreasing powers of n, beginning as follows.

danan = 3 ((42'\/5 —7)" (51 — V2) V—2iv/2 - 8 L (42— )" (=50 — v2) V/2iv/2 — 8)(2.5>

n3/2 247r3/2 n3/2 2473/2
+0 (9” n~5/ 2)

(Baryshnikov, M. and Pemantle 2021)



(General Picture

e Compute critical points and sort by height

e Verity critical points at infinity don’t interfere

e Determine the integer coeflicients kv of highest crit pts
e Keep going until you get non-zero coefficients

e Try to approximate local integrals Uy (n)

Hardest part: Finding integer coefficients (and checking non-zero)

Currently we can only find the coefficients for minimal critical
points, or in dimension two, or when H has only linear factors
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