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Foreword

A little over 100 years ago, Hardy and Ramanujan used complex integrals to estimate
the number of partitions of a large integer. This gave an inkling of a deep connection
between something elementary (counting) and something deep (complex variable
theory). The counting problem yields a generating function; coefficients of this
generating function can be computed or approximated via Cauchy’s integral formula.
For many decades Hardy and Ramanujan’s work, built on ideas of de Moivre,
Bernoulli, Euler, and Dirichlet, stood as a lone tour de force. Enumeration continued
to appear elementary and isolated from the rest of mathematics.

In the 1950’s Hardy and Ramanujan’s circle method (integrate over a circle
approaching the singularities of the generating function) was systematized somewhat
by Hayman. A few decades later, Flajolet and Odlyzko distilled the process of
singularity analysis to a set of effective transfer theorems, allowing almost automatic
derivation of asymptotics. Notably, over this span of seventy years, none of the
analyses exceeded the technical difficulty of Hardy and Ramanujan’s.

This book introduces a beast of quite a different color: Analytic Combinatorics
in Several Variables (ACSV). Generating functions in more than one variable can
be quite powerful. They capture joint distributions of combinatorial features, for
example the size of the ground set of a permutation as well as its number of cycles,
or the location and orientation of a domino in a random tiling, along with the size of
the tiling. Transferring the ideas of the Hardy-Ramanujan analysis to the multivari-
ate setting, however, turns out to summon mathematics from the four corners of the
knownmathematical world. Starting with a Cauchy integral, this time in several vari-
ables, one is led in simple cases to saddle point integration. More complicated cases
require some harmonic analysis and singularity theory (inverse Fourier transforms
of homogeneous rational forms). Sometimes there is a nontrivial choice of where to
put the contour; this invokes algebraic topology and stratified Morse theory. Making
all of the steps effective requires computational algebra and homotopy methods.

The story is beautiful but also difficult and eclectic. Melczer finds a way to tell it
understandably and simply. Indeed, for Melczer, computation drives understanding.
To quote from Knuth, “Science is what we understand well enough to explain to a
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viii Foreword

computer.” And so, drawing from the author’s expertise in computer algebra, every
part of the story is told from the viewpoint of effective computation.

The book contains deep theorems, yes, but it embodies much more: a tutorial
in computer algebra, expertly conceived illustrations, and a very rich collection of
examples. Among the examples one finds Kronecker coefficients, rational period
integrals, and models from statistical physics. The author’s background in lattice
walk enumeration keeps the book grounded in yet another source of compelling
examples. As the title implies, this book succeeds where our own arguably has not,
in making this material inviting. Those taking up the invitation to ACSV will be
expertly guided into beautiful new territory.

February 2020, Robin Pemantle and Mark Wilson



Preface

If you ask a mathematician what they love most about mathematics, certain answers
invariably arise: beauty, abstraction, creativity, logical structure, connection (be-
tween disciplines and between people), elegance, applicability, and fun. This book
can be viewed as a humble attempt to show that combinatorics is the branch of
mathematics best situated to embody and illustrate all of these virtues. Our core
subject is the large-scale behaviour of combinatorial objects, with a focus on two
goals: the calculation of approximate asymptotic behaviour of sequences arising in
combinatorial contexts, and the derivation of limit theorems describing how the pa-
rameters of combinatorial objects behave for random objects of large size. We begin
with a simple idea, that to study a sequence we should look at its generating function
(the formal series whose coefficients are the sequence of interest). Algebraic, differ-
ential, and functional equations satisfied by the generating function then represent
data structures which encode the sequence, with more complicated sequences requir-
ing more complicated encodings. These encodings can be used to computationally
manipulate the sequence and, in many cases, determine its underlying properties.

The field of analytic combinatorics studies the asymptotic behaviour of univari-
ate sequences by applying techniques from complex analysis to their generating
functions. The universality of many properties of analytic functions often allows for
an automatic asymptotic computation, with much of the theory now implemented
in computer algebra systems. In this sense the study of analytic combinatorics for
univariate sequences is somewhat classical; it is captured in glorious detail by the
book Analytic Combinatorics of Philippe Flajolet and Robert Sedgewick. More re-
cently, in the early twenty-first century, Robin Pemantle and Mark Wilson (later
joined by Yuliy Baryshnikov) combined methods from complex analysis, singularity
theory, algebraic and differential geometry, and topology to form a theory of analytic
combinatorics in several variables (ACSV). The textbook Analytic Combinatorics in
Several Variables, by Pemantle and Wilson, provides a comprehensive overview of
the subject, but its use of advanced constructions coming from the variousmathemat-
ical disciplines conscripted into their work makes it suitable mainly for researchers
with strong mathematical backgrounds across several domains.
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The aim of this book is to provide a more accessible introduction to this vast
and beautiful area of combinatorics. There are several (potentially overlapping)
audiences: mathematicians interested in the behaviour of functions satisfying cer-
tain algebraic, differential, or functional equations; combinatorialists interested in
learning the theory of analytic combinatorics and analytic combinatorics in several
variables; computer scientists interested in the computational aspects of these sub-
jects; and researchers from a variety of domains with an interest in the resulting
applications. Our presentation is calibrated for an audience of math and computer
science graduate students and researchers, although advanced undergraduates and
those from adjacent research areas shouldn’t be scared away. Previous knowledge
of sequences and series, at the level of an advanced calculus course or first course
in analysis, is the main prerequisite. Of all the advanced mathematical topics en-
countered, a familiarity and comfort with the basics of complex analysis (analytic
functions, residues, the Cauchy integral formula) are the most crucial, although
the necessary complex analytic background is reviewed in an appendix. Additional
knowledge from commutative algebra, singularity theory, algebraic and differential
geometry, and topology can help put certain results in context but are not assumed.
Applications from numerous mathematical and scientific domains are given, in-
cluding many illustrations of the various techniques on lattice path enumeration
problems. We put a strong focus on computation, and the companion website to this
text contains computer algebra code working through the examples contained here.

Because it draws from so many different areas of mathematics, analytic combina-
torics in several variables has a reputation of being powerful yet impenetrable. My
deepest wish is that this work illuminates the vast riches of ACSV and opens up the
area to new researchers across disciplines.

Acknowledgments First and foremost, I owe a great debt to the three architects
of analytic combinatorics in several variables, Robin Pemantle, Mark Wilson, and
Yuliy Baryshnikov, for their support and guidance over the last several years. This
book grew out of my doctoral thesis for the University of Waterloo and the École
normale supérieure de Lyon, which was made incalculably better by the supervision
of Bruno Salvy and George Labahn, and by the thesis reporters and members of the
thesis committee: Jason Bell, Sylvie Corteel, Michael Drmota, Ira Gessel, and Éric
Schost. Early versions of this manuscript were used as the basis for short lecture
series at the University of Illinois Urbana-Champaign and the Research Institute for
Symbolic Computation at JKU Linz, and for graduate courses at the University of
Pennsylvania and the Université du Québec à Montréal, and I thank all the students
from those classes for their feedback. Russell May gave invaluable comments on the
text, helping to improve its presentation and fix many typographical errors. Marcus
Michelen, Shaoshi Chen, Chaochao Zhu, Manuel Kauers, Alin Bostan, and Marc
Mezzarobba gave feedback on various versions of the manuscript, along with my
summer students Keith Ritchie and Andrew Martin. I would also like to thank Persi
Diaconis, Jessica Khera, Erik Lundberg, and Armin Straub for suggesting problems
which appear here. I originally became interested in analytic combinatorics as an
undergraduate student, under projects (some of which inspired problems in this text)
supervised by Marni Mishna, Alin Bostan, and Manuel Kauers, and I hope this text
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conveys a sense of the wonder I experienced under their supervision. In addition
to those mentioned above, some of the work presented here originally appeared
in papers coauthored by Mireille Bousquet-Mélou, Julien Courtiel, Éric Fusy, and
Kilian Raschel, all of whom taught me a great deal about combinatorics. Thanks
also to Peter Paule for encouraging me to write this book and agreeing to be its
mathematical editor, and Martin Peters and Leonie Kunz at Springer.

Finally, this book is dedicated to Philippe Flajolet andHerbWilf, two inspirational
mathematicians–on both personal and professional terms–whom I never had a chance
to meet. I would like to thank Ruth Wilf for welcoming me to Philadelphia during
my time there and sharing stories of Herb. I also thank my family (my parents, Laura,
Celia, Harry, and Su) and friends who have supported me over the years.
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W Singular setV(H) togetherwith coordinate hyperplanesV(z1 · · · zd)
M Domain of analyticity Cd \W of Cauchy integral
MR Elements ofM with real coordinates
Cx Imaginary fiber x + iRd = {x + iy : y ∈ Rd} defined by x ∈ Rd
sgn(z) The univariate sign function, equal to 0 if z = 0 and z/|z | otherwise
sgn(z) The multivariate sign function, equal to sgn(z1 · · · zd)
sgnσ(B) Sign of component B with respect to σ
σB Critical point for bounded component B (see Proposition 8.2)
B(σ) Bounded component for critical point σ (see Definition 8.7)
N(w) Normal cone corresponding to w
τσ Linking torus
νB,σ Linking constant of component B and critical point σ
Ow The local ring at w ∈ Cd
VS The flat defined by an index set S
SS The stratum defined by an index set S



Chapter 1
Introduction

For it is unworthy of excellent men to lose hours like slaves in
the labor of calculation which could safely be relegated to
anyone else if the machine were used.
— Gottfried Wilhelm Leibniz

To count is a modern practice, the ancient method was to guess.
— Samuel Johnson

A fundamental problem in mathematics is how to efficiently encode mathematical
objects and, from such encodings, determine their underlying properties. As an
illustrative example, imagine encoding the elements of different algebraic structures
on a computer.

• An integer can be encoded in its binary representation togetherwith a bit indicating
its sign.

• A rational number can be encoded as a pair of integers representing its numerator
and denominator.

• An algebraic number over the rationals, α ∈ A, can be encoded by its minimal
polynomial mα(z) ∈ Z[z] (defined by a finite list of integers) and an isolating
region of the complex plane (defined, for instance, as a disk in the complex plane
with rational radius and a centre with rational real and imaginary parts).

Although the first two representations here are somewhat explicit, the third is implicit:
we can view the integer polynomial mα as a ‘data structure’ storing α, from which
information about α can be computed as desired. On the other hand, since the field
of complex numbers C is uncountable its elements cannot even be listed. Thus, there
is a nesting of algebraic structures of increasing complexity

Z ⊂ Q ⊂ A ⊂ C

going from a ring whose elements can be encoded and manipulated directly to a field
where almost nothing can be decided for a general element.

In this text we examine questions of computability (the study of what can be
decided) and computational complexity (the study of how fast something can be
decided) in enumerative combinatorics, with a focus on the limiting behaviour of se-
quences and large discrete structures. Examining different encodings of increasingly
complicated classes of sequences, we will see how current questions on these topics
focus around sequences defined by multivariate rational functions. At the heart of
this work is the new field of analytic combinatorics in several variables (abbreviated
ACSV), and the majority of this text is dedicated to the development and exposition

1



2 1 Introduction

of this theory. In addition to providing tools for the study of univariate sequences,
ACSV also allows for an analysis of multidimensional sequences encoded by series
expansions of multivariate functions. This allows for striking results, such as limit
theorems for various combinatorial objects.

At each stage of our study we focus on effective methods and implementable
algorithms, with links to necessary software packages given at the textbook website,

https://melczer.ca/textbook/

This website also contains code working through every computational exam-
ple in this textbook. The majority of the examples are worked through in the
Maple [1] and Sage [51] computer algebra systems, although other software (such
as MAGMA [15]) is used occasionally when specific packages are required. Of
particular importance for this text is the Maple gfun package of Salvy and Zimmer-
mann [48] and the Sage ore_algebra package of Kauers et al. [33]. Links to the most
up to date versions of this software are given on the book website.

1.1 Algorithmic Combinatorics

Given a sequence ( fn) = f0, f1, f2, . . . , the generating function of ( fn) is the series

F(z) =
∑
n≥0

fnzn.

We typically consider the casewhen the fn are complex numbers, although generating
functions can be defined formally over more general rings in a manner described in
later chapters. Wilf [53] famously described a generating function as a “clothesline
on which we hang up a sequence of numbers for display,” aptly summarizing their
role as data structures. Assuming the terms of ( fn) are complex numbers which grow
at most exponentially, i.e., there exists K > 0 such that | fn | < Kn for all n ∈ N, the
generating function F(z) can be viewed as the power series expansion of a complex-
valued function at the origin. A sequence can thus be encoded by equations satisfied
by its generating function.

As an example, consider the following classes of functions which appear fre-
quently in combinatorial contexts.

• ApolynomialF(z) ∈ Q[z] can be encoded as a finite sequence of rational numbers.

• A rational function F(z) ∈ Q(z) can be encoded as a pair of polynomials in Z[z],
corresponding to its numerator and denominator.

• Say that F(z) is algebraic if there exists a non-zero polynomial P(z, y) ∈ Z[z, y]
such that P(z, F(z)) = 0. The algebraic functions we consider can be encoded by
such polynomials P(z, y) together with initial terms of their power series at the
origin to uniquely determine them among the roots of P with respect to y.

https://melczer.ca/textbook/
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• Say that F(z) is differentially finite (D-finite) if it satisfies a non-zero linear
differential equation with coefficients in Z[z]. A D-finite function can be encoded
by an annihilating linear differential equation and a finite set of initial conditions.

• Say that F(z) is differentially algebraic (D-algebraic) if there exists d ∈ N and
a non-zero multivariate polynomial P(z0, z1, . . . , zd) with coefficients in Z such
that F and its derivatives satisfy P(F, F ′, . . . , F(d)) = 0. A D-algebraic function
can be encoded by the polynomial P and a finite set of initial conditions.

Sequences coming from closely related combinatorial problems often have generat-
ing functions which share similar properties—for example, the generating function
of any sequence satisfying a linear recurrence relation with constant coefficients is
rational, while the generating function of any sequence satisfying a linear recurrence
relation with polynomial coefficients is D-finite—and many amazing methods have
been developed to go from a combinatorial enumeration problem to an encoding of
the relevant generating function.

Given a generating function specified by one of the above encodings, there are
many natural questions that can be asked, including

• Can a simple1 closed form of the term fn be determined as a function of n?

• Can the asymptotic behaviour of fn be determined as a function of n directly from
this encoding? Can it be determined from any encoding?

• How else can this generating function be encoded, and how can one convert to
these other encodings? What is the “simplest” encoding possible?

The asymptotic behaviour of a sequence fn describes how it behaves as n → ∞.
Frequently, the asymptotic behaviour of a sequence can be more revealing than
cumbersome exact enumeration formulas and is often easier to determine.

Example 1.1 (Exact vs. Asymptotic Enumeration for Unlabelled Graphs)

Wilf [52, Ex. 3] conjectured in 1982 that the number fn of unlabelled graphs on n
nodes cannot be computed in polynomial time with respect to n. This conjecture is
still open, although it has long been known2 that fn n!

2(
n
2)
→ 1 as n→∞.

1.1.1 Analytic Methods for Asymptotics

Our main tools for asymptotic enumeration come from analysis, and the systematic
use of analytic techniques to study the asymptotic behaviour of sequences is known

1 Of course, the notion of a “simple” closed form expression is subjective, and thus open to
interpretation. We do not touch on this delicate topic here, but refer the interested reader to
Wilf [52], Stanley [49, Section 1.1], and Pak [40] for interesting meditations on the subject.
2 Asymptotic behaviour of unlabelled graphs follows from the fact that there are 2(

n
2) labelled

graphs on n nodes, almost all of which have no automorphisms; see Noy [14, Ch. 6] for details.
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as the study of analytic combinatorics. The main results of analytic combinatorics
illustrate strong links between the singularities of a generating function (roughly,
pointswhere the function ‘behaves badly’) and asymptotics of its coefficients, starting
with the Cauchy integral formula. When the generating function of ( fn) represents
a convergent power series in a neighbourhood of the origin, the Cauchy integral
formula implies that for any n ∈ N the term fn can be represented by a complex
contour integral

fn =
1

2πi

∫
γ

F(z)
dz

zn+1 ,

where γ is a counter-clockwise circle in the complex plane sufficiently close to the
origin. This equality relates the power series coefficients of F to an analytic object,
and allows one to determine asymptotics of fn by applying classical results on the
asymptotics of parametrized complex integrals.

Unless the terms fn decay too fast (faster than any exponential function), a
complex-valued function defined by the series F(z)will admit at least one singularity
in the complex plane. In Chapter 2 we will see how knowledge of the function F(z)
near its singular points closest to the origin, known as dominant singularities, directly
translates into explicit asymptotic formulas for fn. The first major result of analytic
combinatorics is that the location of the dominant singularities in the complex
plane determine the exponential growth ρ = lim supn→∞ | fn |1/n of the coefficient
sequence, the coarsest measure of its growth. After finding the dominant singularities
of F, giving the exponential growth of fn, full asymptotic behaviour can be deduced
by studying F near these points. For most examples encountered in applications it
is sufficient to determine the type of each dominant singularity (roughly, if it comes
from a division by zero, substituting zero into an algebraic root or logarithm, etc.)
together with small amount of additional analytic information which can then be
substituted into known formulas.

Example 1.2 (The Catalan Generating Function)

The power series coefficients (cn) of the Catalan generating function

C(z) =
1 −
√

1 − 4z
2z

= 1 + z + 2z2 + 5z3 + · · ·

count an incredible number of combinatorial sequences, including the number of
rooted binary plane trees (trees where each node has at most two children). Because
z = 1/4 is a singularity of C(z) due to a square-root vanishing, and there are no
other3 singularities of C(z), the techniques of analytic combinatorics (in particular,
Proposition 2.11 in Chapter 2) immediately imply that the nth power series coef-
ficient cn behaves like 4nn−3/2π−1/2 as n → ∞. Stanley [50] gives an extensive
account of this sequence and 214 (!) different combinatorial objects it counts.

3 Although there may appear to be a problem at z = 0, where the denominator ofC(z) is zero, this
is not the case: the numerator ofC(z) also vanishes at z = 0 and the limit ofC(z) as z approaches
zero exists and is finite.
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D-Finite
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Rational

D-Algebraic
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Fig. 1.1 The classes of generating functions, models of computation, and numerical constants
discussed here, including the generating function class of rational diagonals which is central to
analytic combinatorics in several variables.

Methods in analysis are flexible, giving some freedom when setting up cal-
culations, and this flexibility often allows for an automated asymptotic analysis4.
Automatically determining properties of a generating function from an encoding is
the domain of algorithmic combinatorics. As we will see, asymptotic expressions
for sequences with rational or algebraic generating functions can be determined au-
tomatically from the encodings discussed above. In contrast, it is undecidable to take
a general D-algebraic function with rational power series coefficients, encoded as
above, and determine whether or not its coefficients grow exponentially. Although
much is known about the asymptotics of sequences with D-finite generating func-
tions, the decidability of determining such asymptotics is an open problem; D-finite
functions thus lie at the boundary of decidability in enumeration.

When discussing decidability results it is interesting to compare our classes of
generating functions to families of objects in theoretical computer science. A finite
automaton is the simplest model of computation used for pattern recognition, and
counting the strings of patterns recognized by a fixed automaton by the number
of symbols they contain always results in a rational generating function. Similarly,
algebraic generating functions appear when enumerating patterns recognized by
certain ‘pushdown’ automata. Because finite and pushdown automata are relatively
simple models of computation, it is not surprising that many properties of rational
and algebraic generating functions can be decided. On the other hand, it can be
shown [30] that universal Turing machines can be simulated by solving D-algebraic
systems! As Turing machines are powerful, it is thus not surprising that D-algebraic
functions are hard to get a handle on. The increasingly complicated classes of

4 We will see several examples in this text. For an early example of an automated system to
determine asymptotics of sequences, implemented in CAML and Maple, see the Lambda-Upsilon-
Omega (ΛΥΩ) system of Flajolet et al. [26, 27].
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Fig. 1.2 Lattice walks of length 500 restricted to the quadrant N2 using the step sets S =
{(±1, 0), (0, ±1)} (left) and S = {(0, −1), (±1, 1)} (right). Note the walks have self-intersections.

generating functions, models of computation, and numerical constants are displayed
in Figure 1.1; these connections are further explored in Chapters 2 and 3.

1.1.2 Lattice Path Enumeration

Much of the theory of algorithmic combinatorics appears in the rich field of lattice
path enumeration, which forms the main source of combinatorial applications in this
textbook5. Roughly speaking, a lattice path model is a combinatorial class which
encodes the number of ways to “move” on a lattice subject to certain constraints.
More precisely, given a dimension d ∈ N, a finite set of allowable steps S ⊂ Zd ,
and a restricting region R ⊆ Zd , the integer lattice path model taking steps in S and
restricted toR is the combinatorial class consisting ofwalks: finite sequences of steps
beginning at some fixed point of R which must always stay in R (see Figure 1.2). We
may also restrict the class further by adding other constraints, such as only admitting
walks which end in some terminal set.

In addition to a large number of applications, discussed in Chapter 4, lattice path
problems form an interesting ‘combinatorial playground’ to develop new methods
for dealing with a wide range of generating function behaviours. For example,
the generating functions of two-dimensional models restricted to the quadrant N2

with step sets S ⊂ {±1, 0}2 already exhibit a wide variety of behaviour: they
admit generating functions which are rational, algebraic, transcendentally D-finite,

5 Of particular use to us will be the extreme effectiveness of analytic combinatorics in several
variables for solving lattice path enumeration problems. It is interesting to note that the development
of complex analysis in a single variable was greatly inspired by the study of elliptic functions, while
the theory of complex analysis in several variables suffered due to lack of concrete problems. To
quote the opening sentence of Blumenthal [13] from 1903, translated from the German, “If, in
contrast to the widely and highly developed theory of functions of a single complex variable, the
theory of functions of several variables has lagged behind, this is due essentially attributed to the
absence of suitable interesting examples which could lead the general theory.” The methods of
ACSV rely heavily on complex analysis in several variables.
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non-D-finite but D-algebraic, and non-D-algebraic. Progress has been made on the
study of these quadrant models over the last several decades using tools from the
theory of algebraic curves, formal power series approaches to discrete difference
equations, probability theory, computer algebra, boundary value problems, potential
theory, differential Galois theory, the study of hypergeometric functions, and several
branches of complex analysis. Many of the decidability issues discussed above arise
naturally in this context.

Example: D-finite Decidability Problems in Lattice Path Enumeration

Consider the sequence an counting the number of walks restricted to N2 which
begin at the origin and take n steps in S = {(±1, 0), (0,±1)}, illustrated on the left
of Figure 1.2. Using results from Chapters 3 and 4, it is possible to show that the
generating function A(z) of (an) satisfies the linear differential equation

z2(4z − 1)(4z + 1)A′′′(z) + 2z(4z + 1)(16z − 3)A′′(t)

+ 2(112z2 + 14z − 3)A′(t) + 4(16z + 3)A(t) = 0,
(1.1)

a result originally conjectured by Bostan and Kauers [17] and proven by Bostan
et al. [16]. Using techniques discussed in Chapter 2, it is possible to automatically
translate such a differential equation to a linear recurrence relation satisfied by an,

(n + 4)(n + 3)an+2 − 4(2n + 5)an+1 − 16(n + 1)(n + 2)an = 0. (1.2)

Because this is a linear recurrence, the set of all sequences which satisfy (1.2) form
a complex vector-space, and because such a sequence is uniquely determined by
its first two values this vector space has dimension two. Furthermore, the methods
of Chapter 2 allow us to describe a basis of this vector space consisting of two
elements, Ψ1(n) and Ψ2(n), whose asymptotic expansions

Ψ1(n) = 4n n−1
(
1 −

3
2n
+ · · ·

)
and Ψ2(n) = (−4)n n−3

(
1 −

9
2n
+ · · ·

)
as n→ ∞ can be computed to any fixed accuracy. Because Ψ1 and Ψ2 form a basis
for all solutions of (1.2), there exist constants λ1, λ2 ∈ C such that our lattice path
counting sequence, which is one particular solution of (1.2), satisfies

an = λ1 Ψ1(n) + λ2 Ψ2(n).

Although it is currently unknown how to compute the constants λ1 and λ2 directly
from (1.1) and initial terms of A(z), we will see how to use numeric analytic
continuation to rigorously approximate them to any desired accuracy. Heuristically,
one could also exploit this recurrence to efficiently compute the term aN for a large
index N , say N = 1000, and use this result to approximate λ1 ≈ aN/Ψ1(N). In this
case we can obtain a numerical approximation
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an = (1.273 . . . )Ψ1(n) + (5.092 . . . )Ψ2(n) ∼ (1.273 . . . )4nn−1

with rigorous error bounds on the numeric constants, giving asymptotics up to a
multiplicative constant which can be determined to high accuracy. Among other
things, we will see that this asymptotic growth directly implies that A(z) is not
algebraic and thus cannot be encoded by a polynomial equation.

In contrast, let bn count the number of walks restricted to N2 which begin at the
origin and take n steps in S = {(0,−1), (−1, 1), (1, 1)}, illustrated on the right of
Figure 1.2. Now the generating function B(z) satisfies a linear differential equation
of order 5 whose coefficients are polynomials of degree 16, from which it is possible
to show that bn satisfies a linear recurrence relation of order 6 with polynomial
coefficients. This linear recurrence has a basis Ψ1(n), . . . ,Ψ6(n) whose expansions
as n→∞ can be computed to any fixed accuracy, where

Ψ1(n) =
3n
√

n
(1 + · · · )

and all other terms grow exponentially slower than 3n as n→ ∞. As the Ψj form a
basis there are λ1, . . . , λ6 ∈ C such that the lattice path counting sequence bn satisfies

bn = λ1Ψ1(n) + λ2Ψ2(n) + · · · + λ6Ψ6(n). (1.3)

Since Ψ1(n) is the asymptotically dominant basis element it appears that bn grows
like λ1 3n/

√
n. However, perhaps surprisingly, numerically approximating λ1 shows

that it equals zero to many decimal places. In fact, we will see that the number of
lattice walks on n steps has exponential growth 2

√
2, and its dominant asymptotic

behaviour depends on the parity of n.
In general, it is not known whether one can examine decompositions like (1.3) for

sequences satisfying linear recurrences with polynomial coefficients and determine
which coefficients are identically zero. The issue is that although one can show these
constants to be zero to large accuracy, a priori there are no lower bounds on how small
they can be when they are non-zero (in fact there is not even a tight characterization
of the ring of numbers in which these constants lie). This issue, lying at the heart
of effective asymptotic methods for sequences with D-finite generating functions, is
discussed in detail in Chapter 2.

Going back to lattice paths, a full and rigorous asymptotic analysis of models
restricted to the non-negative quadrant stubbornly resisted several attempts. Bostan et
al. [16] gave differential equations satisfied by the generating functions of all quadrant
models with step sets S ⊂ {±1, 0}2, and expressed these generating functions in
terms of explicit hypergeometric functions. Although these representations give
strong information about the sequences involved, it is still difficult to prove the
conjectured asymptotics. For instance, those authors show [16, Conjecture 2] that
the constant λ1 in (1.3) is exactly zero if and only if the integral
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0

{
(1 − 3v)1/2

v3(1 + v2)1/2

[
1 + (1 − 10v3) × 2F1

(
3/4, 5/4

1

���� 64v4
)

+ 6v3(3 − 8v + 14v2) × 2F1

(
5/4, 7/4

2

���� 64v4
)]
−

2
v3 +

4
v2

}
dv

equals 1, where 2F1 denotes the hypergeometric series

2F1

(
a, b
c

���� z
)
=

∑
n≥0

(a)n(b)n
(c)n

zn

n!
, (x)n = x(x + 1) · · · (x + n − 1).

It is not clear how to prove this identity.
Here we will follow work of Melczer and Mishna [37] and Melczer and Wil-

son [39] to determine asymptotics of these, and many more, lattice path models by
encoding their generating functions using a new data structure:multivariate rational
diagonals. Although a linear differential equation encodes a vector space of solu-
tions, from which the desired generating function is specified by its initial terms, this
representation directly encodes the generating function of interest. Asymptotics can
then be determined using the methods of analytic combinatorics in several variables.

1.2 Diagonals and Analytic Combinatorics in Several Variables

Diagonal representations encode sequences using multivariate series expansions.
Given a d-variate complex function F(z) = F(z1, . . . , zd) with power series

F(z) =
∑

(i1,...,id )∈Nd

fi1,...,id zi11 · · · z
id
d

at the origin, we define themain diagonal of F(z) as the univariate function obtained
by taking the coefficients of this series where all variable exponents are equal,

(∆F)(z) =
∑
n≥0

fn,...,nzn.

More generally, one can define the r-diagonal of F(z) for any r ∈ Rd as

(∆rF)(z) =
∑
n≥0

fnrzn =
∑
n≥0

fnr1,...,nrd zn,

where the coefficient fnr is considered undefined when nr < Nd . Our methods also
apply to more general series expansions whose exponents contain negative integers.

Although the theory we develop works for more general classes of functions, we
focus mainly on series expansions of rational functions so that tools from computer
algebra can be used to automate the necessary computations. Rational diagonals are
studied extensively in Chapter 3, where we will see that each r-diagonal is D-finite
and every algebraic function can be realized as the main diagonal of a bivariate
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rational function. Because the ring of multivariate rational diagonals lies between
the class of algebraic functions, where coefficient asymptotics can be determined
automatically, and the ring of D-finite functions, where this problem is still open,
they make a prime subject on which to study effective asymptotics. Chapter 3
discusses how diagonals arise naturally in combinatorics (lattice path enumeration,
irrational tilings of rectangles, Kronecker coefficients), probability theory (random
walk models), number theory (binomial sums such as Apéry’s sequence, used in his
proof [2] of the irrationality of ζ(3)), physics (statistical mechanics and the Ising
model), and many other areas. Just as Bernoulli [11] used linear recurrence relations
to approximate roots of univariate polynomials in the early eighteenth century,
asymptotic behaviour of the r-diagonals of a rational function 1/H(z) encodes deep
information about the algebraic set defined by H(z) = 0.

1.2.1 The Basics of Analytic Combinatorics in Several Variables

In order to study the asymptotics of rational diagonal coefficient sequences we
make use of complex analysis in several variables. Suppose F(z) = G(z)/H(z) is a
multivariate rational function, where G and H are coprime polynomials with integer
coefficients. When H(0) is non-zero, F admits a power series expansion

F(z) =
∑

(i1,...,id )∈Nd

fi1,...,id zi11 · · · z
id
d

(1.4)

in some open domain of convergence D around the origin. As in the univariate
setting, there is a strong link between the singularities of F(z), which are the elements
of the singular varietyV = {z ∈ Cd : H(z) = 0}, and asymptotics of the r-diagonal
sequence fnr as n → ∞. A singularity is called minimal if no other point in V has
coordinate-wise smaller modulus. The minimal points are the singularities which are
closest to the origin in Cd , similar to dominant singularities in the univariate case,
and they play an important role in determining asymptotics.

The study of analytic combinatorics is more delicate in several variables. Al-
though many6 univariate functions admit a finite number of dominant singularities,
in dimension two and greater there will always be an infinite number of minimal
points unless F(z) is a polynomial. For a fixed direction r, the goal is still to de-
termine a finite number of singularities of F(z) where the local behaviour of F(z)
allows one to determine asymptotics of fnr. The fact that this is not always possible
is a reflection of the pathologies which can arise when dealing with the singularities
of multivariate rational functions.

6 For instance, any rational, algebraic, or D-finite function has a finite number of singularities in
the complex plane.
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Critical Points

Fix r ∈ Nd with positive coordinates. The starting point of a multivariate asymptotic
analysis is a generalization of the Cauchy integral formula to several variables,

fnr =
1
(2πi)d

∫
C

F(z) dz1 · · · dzd
znr1+1
1 · · · znrd+1

d

, (1.5)

where C is a product of circles sufficiently close to the origin. Using standard integral
bounds, we will show that every minimal point w ∈ V gives an upper bound

ρ ≤ |w−r1
1 · · ·w

−rd
d
| (1.6)

on the exponential growth ρ = lim supn→∞ | fnr |
1/n of the diagonal sequence. To

find a set of minimal points where a local singularity analysis of F(z) determines
asymptotics, it makes sense to look for the minimal points minimizing this upper
bound, as those are the only ones around which the integrand of (1.5) could have the
same exponential growth as the diagonal sequence.

Suppose first that the denominator H and its partial derivatives never simultane-
ously vanish. In Chapter 5 we show that frequently the minimal points giving the
best bound in (1.6) satisfy the algebraic system of smooth critical point equations

H(z) = 0, r−1
1 z1Hz1 (z) = · · · = r−1

d zdHzd (z),

where Hz j represents the partial derivative of H with respect to zj . When H and its
partial derivatives never simultaneously vanish, any solution of this system is called
a critical point of F(z).

The condition that H and its partial derivatives never simultaneously vanish
implies that the singular setV forms amanifold, meaningV looks like Cd−1 around
each of its points. When the algebraic set V is not a manifold, one must partition
V into a collection of manifolds called strata and define critical points on each
stratum. In Chapter 9 we discuss how the critical points on any stratum can always
be specified by a system of polynomial equations. Thus, in practice it is usually easy
to characterize the critical points of F(z), which are encoded by algebraic equations,
but much more difficult to decide which (if any) are minimal, as minimality is
a semi-algebraic condition (it relies on inequalities between moduli of variables).
When there areminimal critical pointswhere the singular variety is locally amanifold
such points must minimize the upper bound (1.6) on the exponential growth ρ, but
this may not hold for non-smooth minimal critical points.

Asymptotics

Asymptotic behaviour is determined by deforming the domain of integration in the
Cauchy integral (1.4) to be close to the singularities of F(z), without changing
the value of the integral, then performing a local singularity analysis. Intuitively,
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minimal points are those to which the contour C can be easily deformed, as they are
the singularities closest to the origin, while critical points are those where such a
singularity analysis can be deformed to determine asymptotics. As in the univariate
case, the nature of the singular variety at minimal critical points is important to the
determination of asymptotics, and now the local geometry ofV plays a large role.

The easiest case is when V admits a single minimal critical point w, around
which V is a complex manifold. Assuming some minor extra conditions typically
satisfied in applications, diagonal asymptotics can be obtained by computing a uni-
variate residue integral followed by an d − 1 dimensional integral whose domain
of integration can be made arbitrarily close to w. When V has a finite number of
such minimal critical points, diagonal asymptotics are determined by applying the
so-called saddle-point method to each of the d−1 dimensional integrals. Under con-
ditions which can be automatically verified, there are explicit formulas for diagonal
asymptotics depending only on the minimal critical points involved and evalua-
tions of the partial derivatives of G(z) and H(z): see, for instance, Theorem 5.1 in
Chapter 5.

The next simplest case occurs whenV admits a minimal critical point w around
whichV is the finite union of manifolds whose tangent planes are linearly indepen-
dent; such a point w is called a transverse multiple point. Under certain conditions
which often hold, and which are sufficient for our applications, diagonal asymptotics
can again be computed through explicit formulas. Although we discuss how to per-
form a singularity analysis whenV has a more exotic geometry, our results in these
cases rely on more complicated techniques and are thus less explicit. Ultimately,
the goal of this program is to automate as much as possible, perhaps proving the
decidability of asymptotics for multivariate rational diagonal sequences.

Multivariate Generating Functions and Central Limit Theorems

Instead of simply viewing a multivariate function F(z) as a data structure for a
single r-diagonal sequence, we can also view F(z) as a truly multivariate generating
functionwhose coefficients enumerate different parameters on combinatorial objects.
In this case we want to know coefficient behaviour for all r-diagonals. Our results
show that for ‘most’ directions (in a manner to be made precise) asymptotics behave
in a uniform manner as r varies, and in many situations we are even able to prove
limit theorems about the coefficients of interest. For example, if for each n ∈ N
we let [zn

d
]F(z) denote the terms in the series expansion of F(z) containing zn

d
then

the results of Chapter 5 give automatically verifiable conditions under which the
coefficients of [zn

d
]F(z) approach a multivariate normal distribution as n → ∞.

Figure 1.3 illustrates two examples, which we return to in Chapter 5.
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Fig. 1.3 Left:The coefficients of zn in 1/(1−z−xz2−yz3) approach a bivariate normal distribution
as n→∞ (n = 200 is pictured). These coefficients enumerate certain permutations of {1, . . . , n}
by the number of two and three cycles they contain, part of a family studied by Chung et al. [18]
due to a connection to random perfect matchings in bipartite graphs. Right: Let ek,n denote the
number of pairs of polynomials (r, q) over the finite field of prime order p such that q is monic,
n = deg q > deg r , and Euclid’s gcd algorithm applied to (r, q) takes k steps to terminate. The
methods of Chapter 5 imply ek,n approaches a normal distribution as n → ∞. Pictured is a
frequency count of divisions performed when running Euclid’s algorithm on 10 000 random pairs
of polynomials with deg q = 500 and p = 3, compared to the limiting distribution.

1.2.2 A History of Analytic Combinatorics in Several Variables

Using the binomial theorem, coefficient sequences of multivariate rational functions
can often be represented as sums of non-negative terms which are amenable to classi-
cal asymptotic techniques covered, for instance, in de Bruijn [19]. Early work on truly
multivariate analyses of generating functions came from a probabilistic examination
of their coefficients. Starting in the 1970s, Bender [7] derived local and central limit
theorems for coefficients in the bivariate case, which Bender and Richmond [8] gen-
eralized to any number of variables, followed by related work by those authors and
collaborators [10, 29, 9]. Additional work in the 1990s further examined limit the-
orems for coefficients of bivariate generating functions [28, 25, 21, 22, 23, 31, 32].
Near the end of this probabilistic work, a new approach arose which used multi-
variate complex residues to determine coefficient asymptotics for functions whose
denominators are products of linear factors [35, 12] and for bivariate functions [36].
Although the theory developed in these early approaches was applied in a some-
what ad hoc manner, much of the modern approach was present; for example, the
queuing theory work of Kogan and Yakovlev [34] derived asymptotics using residue
computations to reduce questions of asymptotic behaviour to an analysis of saddle-
point integrals. Egorychev’s book [24] on combinatorial identities contains a small
number of results using multivariate integrals.

More recently, Pemantle, Wilson, Baryshnikov, and collaborators, have brought
together results from several different mathematical disciplines in order to develop a
large-scale systematic theory ofmultivariate asymptotics for combinatorial purposes.
Perhaps the first work in this program is Pemantle [41], which studies coefficient
sequences of multivariate rational functions whose asymptotic expansions terminate
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(and thus uniquely determine the sequences of interest). In the early 2000s, Pemantle
andWilson [42] gave a method for determining asymptotics when the singular setV
is a complex manifold and there are minimal critical points. Soon after, those authors
extended their results to cover a larger set of singular behaviour [43]. Raichev and
Wilson [46, 47] gave a method to determine higher-order asymptotic terms.

These early results follow the ‘surgery’ approach to ACSV, meaning they use
simple and explicit deformations of the multivariate Cauchy residue integral. Later
work of Baryshnikov and Pemantle [6] used more complicated deformations of the
domain of integration in the multivariate Cauchy integral to extend these results.
This approach, extended in the textbook of Pemantle and Wilson [44] and recent
papers of Baryshnikov, Melczer, and Pemantle [5, 4, 3], shows how the methods of
ACSV fit into the very general framework of stratified Morse theory, allowing the
use of advanced homological methods.

Our presentation of analytic combinatorics in several variables focuses more on
explicit calculations, including the derivation of effective algorithms working in a
large variety of situations. DeVries et al. [20] gave a general algorithm for bivariate
asymptotics when V forms a smooth manifold and Raichev [45] developed a Sage
package which helps with some of the computations necessary in an asymptotic anal-
ysis. More recently, Melczer and Salvy [38] gave algorithms and complexity bounds
for the analysis of multivariate generating functions in any number of variables, with
an accompanying Maple implementation. Links to this software can be found on the
website for this textbook.

1.3 Organization

This textbook is split into three parts.

Part I

Part I covers the background and motivation for analytic combinatorics in several
variables, including a thorough treatment of univariate techniques.We take a compu-
tational viewpoint, and our presentation of univariate methods is structured to help
guide intuition in the more advanced multivariate setting. Part I begins in Chapter 2,
which describes in detail the underpinnings of univariate analytic combinatorics.
After some background on generating functions and combinatorial classes, we intro-
duce the main tools of analytic combinatorics through an extended example looking
at alternating permutations. This serves as a lead-in to the general theory. The ana-
lytic, algebraic, arithmetic, and asymptotic properties of rational, algebraic, D-finite,
and D-algebraic power series are also detailed.

Chapter 3 serves as an introduction to the theory of complex analysis in several
variables, and the use of multivariate generating functions. After providing the tools
necessary for the multivariate singularity analysis which lies at the heart of analytic



1.3 Organization 15

combinatorics in several variables, we give a full treatment of rational diagonals and
their connections to other classes of generating functions. Algebraic tools for the an-
alytic study of multivariate rational functions are described, such as the connection
between so-called amoebas and convergent Laurent expansions. Crucially, the sin-
gular set of a multivariate rational function encodes not only information about the
asymptotic behaviour of the main diagonal sequence of a rational function’s power
series expansion, but also information about all r-diagonals of the power series ex-
pansion and information about diagonals of other convergent Laurent expansions
of the rational function. Thus, a good understanding of these topics helps illustrate
why certain behaviours occur when applying the methods of analytic combinatorics
in several variables. We show that the different convergent Laurent expansions of a
rational function are strongly linked, and study different operators on multivariate
expansions which will be useful for our combinatorial applications. Chapter 3 ends
by describing several domains of mathematics and the sciences where rational diago-
nals arise. In addition to showing the importance of rational diagonals, the examples
discussed here are used to illustrate the methods of ACSV in later chapters.

Part I ends in Chapter 4, which contains a presentation of the kernel method ap-
proach to lattice path enumeration. Beginning with the easy case of unrestricted lat-
tice pathmodels, themechanics of the kernelmethod are built up for one-dimensional
walks restricted to a half-space and two-dimensional walks restricted to a quadrant.
After describing this incredibly effective machinery, which naturally results in ratio-
nal diagonal expressions for the generating functions involved, we survey results in
lattice path enumeration using this approach. We will return to problems in lattice
path enumeration multiple times in the text, using the increasingly sophisticated
analytic techniques we develop to continually derive more general results.

Part II

Part II covers the theory and applications of ACSV when the singular set of the
function under consideration forms a manifold, known as the smooth case. It begins
inChapter 5, which describes the basics of analytic combinatorics in several variables
and shows how to obtain asymptotics for many rational functions which admit
singular varieties that are complex manifolds. After an extended example, which
concretely illustrates the methods of ACSV in the smooth case from start to finish,
the general theory is developed. Many examples are given and general strategies for
applying the tools of analytic combinatorics in several variables are demonstrated.

Chapter 6 describes how to use the methods of ACSV to enumerate lattice path
models in a general orthant Nd when the set of allowable steps is symmetric over
every axis. This analysis uses the results of Chapters 4 and 5 and provides the first
illustration of a principle that will arise multiple times in the text: structures which
exhibit nice combinatorial properties, such as a large number of symmetries, can
often be encoded by generating functions which have nice analytic properties. The
enumerative results derived are quite general, and illustrate the power of analytic
combinatorics in several variables.
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Finally, Part II ends in Chapter 7 with a study of effective algorithms for analytic
combinatorics in the smooth case. After developing some necessary background on
symbolic-numeric computation and methods for encoding solutions of multivariate
algebraic systems, we develop rigorous algorithms and complexity results for rational
diagonal asymptotics in any dimension, under assumptions which are often satisfied
in applications. A large number of examples are worked through using a Maple
package of Melczer and Salvy, which implements the theory presented here.

Part III

Part III generalizes the methods of Part II to allow for the analysis of more general
rational functions. First, Chapter 8 gives a thorough treatment of rational functions
whose denominators are products of real linear factors. Although the singular vari-
eties under consideration may not be manifolds, they will be unions of hyperplanes,
allowing for a deep analysis to be performed.

Chapter 9 describes a general theory of analytic combinatorics in several variables
when the singular variety is no longer amanifold.We extend the analysis of Chapter 8
to get explicit asymptotics for rational functions whose singular variety looks locally
like the union of hyperplanes near minimal critical points. We also detail a new
approach inspired by Morse theory which gives powerful structure theorems for
asymptotics, and provide algebraic criteria that certify when such results hold. This
approach has strong implications for the development of effective algorithms and
yields one of the most promising techniques for resolving computability questions
about sequences with D-finite generating functions.

Chapter 10 uses these new analytic methods to derive deeper and more general
results on lattice path enumeration, resulting in enumerative results for lattice paths
in the orthant Nd whose step sets are symmetric over all but one axis. A selection of
other lattice path problems are surveyed, giving a large selection of exercises for the
reader.
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Part I
Background and Motivation





Chapter 2
Generating Functions and Analytic
Combinatorics

Since there is a great conformity between the Operations in
Species, and the same Operations in common Numbers . . . I
cannot but wonder that no body has thought of accommodating
the lately discover’d Doctrine of Decimal Fractions in like
manner to Species . . . especially since it might have open’d a
way to more abstruse Discoveries.
— Issac Newton

This book is concerned with the study of sequences and their generating functions.
We work over a field K, typically the field of rational numbers Q or the field of
complex numbers C. The basic properties of rings and fields which we use can be
found in any standard reference on abstract algebra, such as Dummit and Foote [38],
although in most cases one can simply view an abstract ring as the ring of integers Z
and an abstract field as Q or C.

Definition 2.1 (sequences and formal power series)A (univariate) sequence (an) =
(a0, a1, a2, . . . ) over a field K is a mapping from the natural numbers to K. A formal
power series over K in the indeterminate z is any formal expression

A(z) =
∞∑
n=0

anzn = a0 + a1z + a2z2 + · · ·

with coefficient sequence (an) in K. We write [zn]A(z) for the term an in A(z).
If A is an integral domain (a commutative ring with no zero divisors) with field of
fractions K, we write A[[z]] to denote the elements of K[[z]] with coefficients in A.

Given two formal power series A(z) =
∑∞

n=0 anzn and B(z) =
∑∞

n=0 bnzn over the
same field, we may define addition of A(z) and B(z) term-wise as

A(z) + B(z) =
∞∑
n=0

anzn +
∞∑
n=0

bnzn =
∞∑
n=0
(an + bn) zn,

and multiplication of A(z) and B(z) by the Cauchy product

A(z)B(z) =

(
∞∑
n=0

anzn
) (
∞∑
n=0

bnzn
)
=

∞∑
n=0

(
n∑

k=0
akbn−k

)
zn.

The word ‘formal’ in the term formal power series refers to the fact that we do not
consider whether a formal series converges, or define what it means to substitute an
element of K into z.

21
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Lemma 2.1 The collection of formal power series over a field K in the indetermi-
nate z forms an integral domain under term-wise addition and the Cauchy product,
called the ring of formal power series over K and denoted K[[z]].

Problem 2.1 asks you to prove Lemma 2.1, and Problems 2.2 to 2.5 ask you to derive
basic properties of formal power series: they form a complete metric space, any
power series with non-zero constant can be inverted, and if F(z) and G(z) are formal
power series such that G(z) has no constant term then the composition F(G(z))
is well defined. Because we deal almost exclusively with power series over fields
K ⊂ C which define analytic functions, we do not go into much detail on the formal
theory. Additional results aboutK[[z]] can be found in Stanley [112] or Henrici [65].
When a formal power series over K ⊂ C converges for complex z in a disk around
the origin, our formal constructions are consistent with the classical definitions for
complex functions.

Example 2.1 (Formal vs. Analytic Power Series)

Let
F(z) =

∑
n≥0

zn and G(z) =
∑
n≥0

n!zn

be formal power series in Q[[z]]. Then

(1 − z)F(z) = 1 +
∑
n≥1
(1 − 1)zn = 1,

so that F(z) = (1 − z)−1 is the multiplicative inverse of 1 − z in Q[[z]]. Note that∑
n≥0

zn =
1

1 − z

as complex-valued functions when |z | < 1, so we can apply results from analysis to
study the series F(z). Because n! grows faster than zn for any fixed z the series G(z)
does not converge for any z , 0, but we can still work formally with G(z).

We use power series because their coefficients can encode interesting information,
such as the number of objects in a combinatorial structure.

Definition 2.2 (combinatorial classes and generating functions)A combinatorial
class is a countable collection of objects C together with a size function | · | : C → N
such that the inverse image of any natural number under | · | is finite (there are a
finite number of objects of any fixed size). The counting sequence (cn) of C is the
sequence cn = #{x ∈ C : |x | = n} counting the number of objects in C of each
size. The generating function of C is the formal power series C(z) =

∑
n≥0 cnzn,

which can be viewed as an element of Q[[z]] with natural number coefficients. More
generally, given a sequence (an) over any field K the generating function of (an) is
the formal power series A(z) ∈ K[[z]] whose coefficient sequence is (an).
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Example 2.2 (Compositions and Partitions)

The class of integer compositions consists of the set of all positive integer tuples,

C =
{
(k1, . . . , kr ) : r ∈ N>0, k j ∈ N>0

}
,

and the size function that maps a tuple to its sum: |(k1, . . . , kr )| = k1 + · · · + kr . The
number cn of objects of size n in C is the number of ways of writing n as a sum of
positive integers. For instance, there are 4 compositions of size 3 since

3 = 1 + 1 + 1 = 1 + 2 = 2 + 1.

To determine the number of integer compositions of size n, consider the expression

1 � 1 � · · · � 1

consisting of n ones and n − 1 symbols �. Replacing each � with a plus ‘+’ or a
comma ‘,’ gives a tuple of elements adding up to n, and conversely every tuple of
size n is obtained in this manner. Thus, cn = 2n−1 and

C(z) =
∑
n≥1

2n−1zn = z
∑
n≥0

2nzn =
z

1 − 2z
,

either formally or as a convergent power series when |z | < 1/2. Similarly, let

P =
{
(k1, . . . , kr ) : r ∈ N>0, k j ∈ N>0, k1 ≥ k2 ≥ · · · ≥ kr

}
be the class of integer partitions, containing all non-increasing positive integer tuples
where the size of a tuple is again its sum. Although similar to integer compositions,
integer partitions are much harder to analyze. In 1748, Euler [40] gave the generating
function expression

P(z) =
∑
n≥0

pnzn =
∏
n≥1

1
1 − zn

,

which follows from the definition of power series multiplication after expanding
each term as a geometric series. Using analytic methods, Hardy and Ramanujan [63]
famously1 determined asymptotic behaviour of pn from a study of P(z).

The theory of generating functions, where a series is studied to understand its co-
efficients, can be traced back to deMoivre [32], who found correspondences between
various properties of a power series and its coefficient sequence; Euler [39], who
gave the first explicit definition of formal series and wrestled with their implications;
Laplace [75], who created a formal calculus of power series; and Cauchy [20], whose

1 In one of the rare instances of puremathematics breaking through toHollywood, the 2015 film ‘The
Man Who Knew Infinity’ includes a dramatic scene where Ramanujan reveals an approximation of
p200 to Major MacMahon, who had recently calculated p200 exactly by hand after much effort.



24 2 Generating Functions and Analytic Combinatorics

work finding analytic expressions for power series coefficients underlies most of an-
alytic combinatorics. The work of many major figures in analysis in the eighteenth
and early nineteenth centuries had an impact; Ferraro [44] gives a detailed account
of the theory of series during this time period.

Although there are many large and beautiful frameworks which allow one to
go from a combinatorial description of a class to a specification of its generating
function, we do not discuss these in detail here. Instead, we typically assume that
we already have access to a generating function specified in one of the manners
discussed in the rest of this chapter. Those wanting to learn more about how to
derive generating function expressions can refer to the Symbolic Method of Flajolet
and Sedgewick [50] and the Theory of Species described by Bergeron et al. [6]. A
nice introduction to such ‘generatingfunctionology’ can be found in Wilf [125].

2.1 Analytic Combinatorics in One Variable

Unless explicitly stated, we now work only with power series over a field K ⊂ C
so that we can apply methods from complex analysis. The appendix to this chapter
recalls some basic facts and notation from complex analysis which we make use of.
Additional background can be found in any standard reference for complex analysis,
such as Henrici [65]. The key idea of analytic combinatorics is to use an analytic
function to encode the sequence formed by its power series coefficients.

Definition 2.3 (power series coefficients) A complex-valued function F(z) is an-
alytic at a ∈ C if F(z) is represented by a convergent power series on some open
disk centred at a. Given a function F(z) which is analytic at the origin, we call the
coefficients ( fn) of a power series representation

F(z) =
∑
n≥0

fnzn,

valid in a neighbourhood of the origin, the power series coefficients of F.

From now on we slightly abuse notation and write F(z) to refer both to the original
function and the power series. There is no harm in making this identification, since
the original function and the series both define analytic functions which agree on an
open disk containing the origin and the series representation is unique. In this way,
we also refer to the complex-valued function F(z) as a generating function of ( fn).

We first recall a few basic facts from complex analysis, which follow from the
background results discussed in the appendix. Definitions for the complex analytic
terms used here can also be found in the appendix.

Deforming Curves of Integration: If C and C′ are simple closed curves
such that C can be continuously deformed to C′ while staying in an open set
where f (z) is analytic, then
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C

f (z)dz =
∫
C′

f (z)dz.

Cauchy Residue Theorem: Suppose f (z) is meromorphic in a domain Ω
and γ is a positively oriented loop in Ω on which f is analytic. Then

1
2πi

∫
γ

f (z)dz =
∑
p∈Ψ

Res
z=p

f (z),

where Ψ is the (necessarily finite) set of poles of f inside γ.

Maximum Modulus Integral Bound: If f (z) is continuous on a curve γ,
then ����∫

γ
f (z)dz

���� ≤ length(γ) ×max
z∈γ
| f (z)|.

The methods of analytic combinatorics work because of deep connections be-
tween analytic properties of a function and asymptotic properties of its power series
coefficients. The basis for this is the Cauchy integral formula, which gives an analytic
expression for power series coefficients.

Theorem 2.1 (Cauchy Integral Formula for Coefficients) Let γ be a positively
oriented circle around the origin and F(z) be a complex-valued function analytic
inside and on γ. If F(z) is represented in a neighbourhood of the origin by the
convergent power series F(z) =

∑
n≥0 fnzn then, for any n ∈ N,

fn =
1

2πi

∫
γ

F(z)
dz

zn+1 . (2.1)

In order to talk about asymptotics we introduce some notation.

Definition 2.4 (asymptotic notation) If fn and gn are sequences, and gn , 0 for n
sufficiently large, then we write

fn = O(gn) if there exist M, N > 0 such that | fn | ≤ M |gn | for all n ≥ N ,
fn = o(gn) if the limit of fn/gn goes to 0 as n→∞,
fn ∼ gn if the limit of fn/gn goes to 1 as n→∞,
fn = Õ(gn) if fn = O(gn logk |gn |) for some k ∈ N.

We nowwork through an example in detail, showing the ease with which complex
analysis allows one to derive powerful results, before discussing the general theory.
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Fig. 2.1 The integral In , over the circle |z | = 2, grows exponentially slower than the coefficients
of tangent. Introducing this integral allows us to determine asymptotics by computing residues at
the singularities z = ±π/2 of tangent.

2.1.1 A Worked Example: Alternating Permutations

An alternating permutation, also known as a zigzag permutation, of size n = 2m+ 1
is an ordering (π1, . . . , π2m+1) of the numbers 1, 2, . . . , 2m + 1 such that consecutive
numbers alternate between increasing and decreasing:

π1 < π2, π2 > π3, π3 < π4, etc.

Let an denote the number of alternating permutations of size n, where an = 0when n
is even. In 1879, André [1] discovered the marvelous fact that if (tn) denotes the
power series coefficients of tan z then an = n! tn, meaning

tan z =
∑
n≥0

tnzn =
∑
n≥0

an
n!

zn

for z in a neighbourhood of the origin. See Problem 2.12 for a derivation of the
generating function; further historical details can be found in Stanley [111].

To determine asymptotics of an it is sufficient to find asymptotics of tn. Since
tan z = (sin z)/(cos z) the tangent function is meromorphic in the complex plane,
with simple poles at the roots {±π/2,±3π/2, . . . } of cos z and no other singularities.
In particular, Theorem 2.1 implies

tn = Res
z=0

(
sin z

zn+1 cos z

)
=

1
2πi

∫
|z |=ε

sin z
cos z

dz
zn+1 (2.2)

for any 0 < ε < π/2. The analysis proceeds in two steps.
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Step 1: Introduce an Exponentially Smaller Integral

Let
In =

1
2πi

∫
|z |=2

sin z
cos z

dz
zn+1 ,

and note that π/2 < 2 < 3π/2. Since tan z is analytic on the compact set C2 =

{z ∈ C : |z | = 2}, there exists M > 0 such that | tan z | ≤ M for |z | = 2. Thus, the
maximum modulus integral bound implies

|In | ≤ length(C2) ×max
|z |=2

���� tan z
(2π)zn+1

���� = 2(2π)
M

(2π)2n+1 = O(2−n).

We will soon show that In grows exponentially smaller than tn, and its introduction
allows us to simplify the Cauchy integral through residue computations.

Step 2: Compute Residues

Since tan z is meromorphic, and in the disk {|z | ≤ 2} only has poles at 0 and ±π/2,
the Cauchy residue theorem (Proposition 2.24 in the appendix) implies

In = Res
z=0

(
sin z

zn+1 cos z

)
+ Res

z=π/2

(
sin z

zn+1 cos z

)
+ Res

z=−π/2

(
sin z

zn+1 cos z

)
.

The residue at the origin is the power series coefficient tn, so after some simplification,
and using the fact that |In | = O(2−n), we obtain

tn = −
(
2
π

)n+1
Res
z=π/2

(
sin z
cos z

)
−

(
−

2
π

)n+1
Res

z=−π/2

(
sin z
cos z

)
+O(2−n).

Lemma 2.4 of the appendix shows that the residue of any fraction p(z)/q(z) at a
point z = a where q(a) = 0 and p(a), q′(a) , 0 equals p(a)/q′(a). Using this fact,
or simply computing the Laurent series of tan z at z = ±π/2 in a computer algebra
system, shows that the residues of tan z at z = ±π/2 have value −1, and

tn =
(
2
π

)n+1
+

(
−

2
π

)n+1
+O(2−n).

Thus, almost magically, we have proven that an ∼ 2
(

2
π

)n+1
n! when n is odd. Recall

that an = 0 when n is even.

Notes

We can come away from this example with several important observations.
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1. The only property of the domain of integration {|z | = 2} used in our argument
was that the circle {|z | = 2} separated the poles of tan z closest to the origin
from the remaining poles. In particular, the domain of integration of In can be
deformed to any circle {|z | = τ} where π/2 < τ < 3π/2 without changing the
value of In. Thus, our argument shows the stronger statement that

an
n!
= tn = 2

(
2
π

)n+1
+O

((
2

3π
+ ε

)n)
for all ε > 0 and n odd.

2. In fact, one can integrate over any circle {|z | = τ}with τ , (2k+1)π/2 for k ∈ N
to obtain an expression for tn as a sum of residues with an error term. As τ grows
the residues of tan z at additional poles will be added to the sum while the error
gets exponentially smaller. For example, taking 3π/2 < τ < 5π/2 gives

an
n!
= 2

(
2
π

)n+1
+ 2

(
2

3π

)n+1
+O

((
2

5π

)n)
for n odd. Note that we may use an error with exponential growth 2/5π, instead
of 2/5π + ε, because the next asymptotic term is again given by a simple pole.
Taking τ →∞ even gives a convergent series expansion

an
n!
= 2

(
2
π

)n+1 ∑
k≥0

1
(2k + 1)n+1

for odd n. Proving this infinite series representation requires uniformly bounding
| tan z | away from its poles, for which it is more convenient to integrate over
squares than circles; see Problem 2.13 for a proof strategy.

3. In this way, every singularity of tan z gives an asymptotic contribution to the
power series coefficients tn. The most important part of this contribution, its
exponential factor, is determined by the location of the singularity. As each
singularity in this example is a simple pole, the sub-exponential factor at each
point is a constant.

Instead of simply introducing the integral In, it can be instructive to imagine
expanding the domain of integration in the Cauchy integral (2.2) away from the
origin while staying where the integrand is analytic, as in Figure 2.2. The domain can
be expanded freely until it becomes locally ‘stuck’ in two places near the singularities
at z = ±π/2. One can compensate for pushing the domain of integration past these
singularities by adding a contribution from each, determined by their residues. The
domain of integration can then be expanded again, until getting ‘stuck’ on the next
singularities. Since the Cauchy integrand decreases exponentially as the domain of
integration moves away from the origin, the contributions from these singularities
get successively smaller.



2.1 Analytic Combinatorics in One Variable 29

Fig. 2.2 Startingwith a small circle at the origin, one can imagine pushing the domain of integration
in the Cauchy integral away from the origin: this deformed curve gets ‘stuck’ near the two poles
of tan z closest to the origin. Deforming past these singularities is possible if one adds integrals
around each, which can be computed using residues.

This mental picture of sliding around domains of integration will be useful in the
multivariate setting, when things are much harder to visualize, and helps guide the
analysis in the presence of non-polar singularities such as algebraic branch points.

2.1.2 The Principles of Analytic Combinatorics

We now discuss the general theory of analytic combinatorics, which closely follows
what we observed in the preceding example. Because we only consider power series
representing analytic functions, the series coefficients of interest can grow at most
exponentially. This makes their exponential growth the most significant component
of their asymptotic behaviour.

Definition 2.5 (exponential growth) The exponential growth of a sequence ( fn) is
the constant

ρ = lim sup
n→∞

| fn |1/n.

The reason for the limsup is that different subsequences of ( fn) can have different
growth; for instance, in combinatorial contexts there may be periodicities in the
underlying counting problem. When ( fn) is the coefficient sequence of an analytic
function at the origin then ρ is finite and is the coarsestmeasure of sequence behaviour
(it may be zero, in which case fn decays faster than any exponential function). The
classic root test on series convergence immediately implies the following.

Proposition 2.1 If
∑

n≥0 fnzn is a power series with finite radius of convergence
R > 0 then the exponential growth of ( fn) is ρ = 1/R.

Furthermore, Cauchy’s integral formula links the radius of convergence of a power
series and the singularities of the analytic function it represents at the origin. The
proof of the following result is Problem 2.16.
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Proposition 2.2 Suppose F(z) is an analytic function represented in a neighbour-
hood of the origin by a power series with finite radius of convergence R. Then F
admits a singularity on the circle |z | = R.

Consequently, the exponential growth of F’s power series coefficients is 1/R,
where R is the minimum modulus of a singularity of F. This motivates the first of
two Principles of Coefficient Asymptotics2.

First Principle of Coefficient Asymptotics: The location of a function’s
singularities dictates the exponential growth ρ of its power series coefficients.

Definition 2.6 (dominant singularity)A singularity of minimummodulus is called
a dominant singularity of F.

The dominant singularities of a function are those which influence dominant asymp-
totics of its coefficient sequence. In many applications, F admits only a finite number
of dominant singularities; for instance, this occurs whenever F is meromorphic.

When the power series coefficients ( fn) of F have exponential growth ρ then
fn ∼ ρn θ(n) as n → ∞, where θ(n) is a function which grows at most sub-
exponentially (or decays). As in Section 2.1.1, one can imagine expanding the
domain of integration in the Cauchy integral representation of Theorem 2.1 until it
gets locally stuck near singularities of F. Each isolated singularity of F will give
some asymptotic contribution to the power series coefficients fn, with the type of the
singularity (pole of a given order, algebraic branch point, logarithmic branch point,
etc.) determining θ(n). This leads to the second principle of coefficient asymptotics.

Second Principle of Coefficient Asymptotics: The nature of a function’s
singularities determines the associated sub-exponential growth θ(n).

The simplest case occurs when the dominant singularities of F are poles. The
asymptotic contributions of each singularity can then be determined by a residue
calculation analogously to the computation in Section 2.1.1, giving the following.

Proposition 2.3 Suppose that F(z) is analytic on the circle |z | = R and is analytic in
the disk |z | < R except at a finite number of (distinct) polar singularities σ1, . . . , σm,
none of which are zero. Then there exist polynomials P1(n), . . . , Pm(n) such that

fn =
m∑
k=1

Pk(n)σ−nk +O(R−n),

and the degree of Pk is one less than the order of the pole of F at z = σk .

2 As laid out by Flajolet and Sedgewick [50], the analytic combinatorialist’s bible.
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Proof If we define the integral

In =
1
(2πi)n

∫
|z |=R

F(z)
zn+1 dz

then the maximum modulus bound implies In = O(R−n) and the Cauchy residue
theorem gives

In = Res
z=0

(
F(z)
zn+1

)
+

m∑
k=1

Res
z=σk

(
F(z)
zn+1

)
= fn +

m∑
k=1

Res
z=σk

(
F(z)
zn+1

)
.

As shown in Lemma 2.4 of the appendix, if z = σk is a pole of order r then

Res
z=σk

(
F(z)
zn+1

)
=

1
(r − 1)!

lim
z→σk

dr−1

dzr−1

(
(z − σk)

rF(z)z−n−1
)
,

which is a polynomial in n of order r − 1. �

When F(z) admits non-polar singularities, asymptotics can be computed using
more nuanced methods. In the nineteenth century, Darboux [30] investigated co-
efficients of functions with algebraic singularities; see Section 2.3 below for more
details. In the 1930s, Jungen [67] showed that when F(z) behaves near a singularity
z = ρ like a sum of terms of the form

C(1 − z/ρ)α logr
1

1 − z/ρ

with r ∈ N, then each term with α ∈ C\Nmakes an explicit asymptotic contribution
to the power series coefficients of F which begins

ρ−n n−α−1 logr (n)
C

Γ(−α)
,

where Γ is the Euler gamma function, whose definition is recalled at the end of the
appendix. A similar formula is available when α ∈ N and r > 0, the only other
situation in which F has a singularity at ρ. We shall see below that this statement
encapsulates the singular behaviour of large classes of generating functions.

Flajolet and Odlyzko [48] coined the term singularity analysis for the process of
translating local behaviour of a function at its singularities to asymptotic information
about its power series coefficients. Those authors gave a modern and uniform treat-
ment of such transfer theorems, considering types of singularities beyond those we
encounter. See also the survey of Odlyzko [87], or the extensive treatment in Flajolet
and Sedgewick [50], for additional details on these methods. Further information on
classical methods for determining asymptotics can be found in de Bruijn [31].
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2.1.3 The Practice of Analytic Combinatorics

Let F(z) be analytic at the origin with coefficient sequence ( fn). If the dominant
singularities of F are known, and they fall into one of the large number of typeswhose
asymptotic contributions have been determined, then one can ‘read off’ dominant
asymptotics of fn by looking up precomputed transfer theorems. In practice, most
of the work in an asymptotic argument thus goes towards the determination and
classification of dominant singularities.

Because we deal mainly with power series whose coefficients are non-negative,
the following result greatly simplifies the determination of dominant singulari-
ties. It has been attributed by various authors to Pringsheim, Borel or Vivanti;
see Hadamard [61] and Vivanti [120] for historical context and Titchmarsh [113,
Sect. 7.21] for a proof.

Proposition 2.4 (Vivanti-Pringsheim Theorem) Suppose F(z) is represented at
the origin by a series expansion with real coefficients which has a finite radius of
convergence R > 0. If this series expansion contains only a finite number of negative
coefficients then z = R is a singularity of F(z).

Thus, when the series coefficients fn of F(z) are non-negative, and do not grow
or decay super-exponentially, their dominant asymptotics can usually be determined
by the following steps:

1. Find the smallest real r > 0 such that z = r is a singularity of F(z);
2. Find all other singularities on the circle |z | = r;
3. If F admits a finite number of singularities on this circle, try to determine the

asymptotic contribution of each by examining the local behaviour of F (see
Propositions 2.11 and 2.17 below);

4. Add the results to get dominant asymptotics of fn.

Example 2.3 (Asymptotics of Surjections)

A surjection of size n is a map from the set [n] = {1, 2, . . . , n} to any set of the form
[r] = {1, 2, . . . , r} which covers [r] (all elements of [r] have a preimage). Using the
Symbolic Method of Flajolet and Sedgewick [50], it is an easy exercise [50, p. 109]
to show that if sn denotes the number of surjections of size n then the generating
function F(z) of sn/n! satisfies

F(z) =
∑
n≥0

sn
n!

zn =
1

2 − ez
= 1 + z + 3(z2/2!) + 13(z3/3!) + · · · .

The singularities of F(z) form the set {log 2 + 2πik : k ∈ Z}, with the smallest real
positive singularity equal to log 2. There are no other singularities of modulus log 2
and F(z) has a simple pole at z = log 2 with corresponding residue −1/2, so

sn ∼
n!

2(log 2)n+1 .



2.2 Rational Power Series 33

We now discuss in detail several important families of generating functions: ra-
tional, algebraic, D-finite, and D-algebraic series. Each successive family in this
list contains the previous families, and thus represents an increasingly complicated
collection of sequences. For instance, although the power series coefficients of a ra-
tional generating function can be written as a finite sum of algebraic quantities which
can be described explicitly, it is undecidable to determine several basic properties
of the coefficients of a general D-algebraic function. We characterize the coefficient
sequences corresponding to each class, describe how they can be manipulated, and
identify possible asymptotic behaviour.

2.2 Rational Power Series

We begin with the class of rational power series.

Rational Functions and C-finite Sequences

In his pioneering eighteenth-century work, plausibly the first use of generating
functions, de Moivre [32, 33] used rational generating functions to study sequences
satisfying linear recurrences with constant coefficients.

Definition 2.7 (C-finite sequences and linear recurrences) Given r ∈ N, a se-
quence ( fn) over a field K (not necessarily a subset of C) satisfies a linear recur-
rence relation of order r with constant coefficients over K if there are constants
c0, . . . , cr−1 ∈ K with c0 , 0 such that

fn+r = cr−1 fn+r−1 + cr−2 fn+r−2 + · · · + c0 fn (2.3)

for all n ≥ 0. Any sequence satisfying (2.3) is uniquely determined by its first r
terms f0, . . . , fr−1, called the initial conditions of ( fn). A sequence that satisfies a
linear recurrence relation over K is called constant recursive, or C-finite, over K.

Remark 2.1 The set of sequences satisfying (2.3) forms a K-vector space of dimen-
sion r: if fn and gn satisfy (2.3) then so does fn + λgn for any λ ∈ K.

De Moivre showed that a sequence is C-finite if and only if its generating function
is rational.

Theorem 2.2 The sequence ( fn) satisfies the recurrence (2.3) if and only if its gen-
erating function F(z) satisfies

F(z) =
∑
n≥0

fnzn =
p(z)

1 − cr−1z − · · · − c0zr
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for some polynomial p(z) ∈ K[z] of degree at most r − 1.

The polynomial p depends on the initial conditions of ( fn). Given a rational func-
tion F whose numerator has degree greater than or equal to its denominator, polyno-
mial division gives F as the sum of a rational function of this form and a polynomial,
which only affects a finite number of coefficients. IfK is not a subset ofC, the rational
function can be viewed as a multiplicative inverse in the ring of formal power series.

Proof For any n ≥ 0, the coefficient [zn+r ]F(z) (1 − cr−1z − · · · − c0zr ) equals

[zn+r ]

(∑
n≥0

fnzn
)
(1 − cr−1z − · · · − c0zr ) = fn+r − cr−1 fn+r−1 − · · · − c0 fn.

Thus, F(z) (1 − cr−1z − · · · − c0zr ) is a polynomial of degree at most r − 1 if and
only if ( fn) satisfies (2.3) for all n ≥ 0. �

Linear recurrence relations have applications in an astounding number of scien-
tific and mathematical fields, including combinatorics, probability, number theory,
dynamical systems, theoretical computer science, economics, biology, and more.
In computer algebra, fast computation with linear recurrence relations is used as a
basis for other algorithms [121, Sect. 12.3]. The text of Everest et al. [41] is dedi-
cated to C-finite sequences and their applications. Bostan et al. [14, Ch. 4] study the
complexity of generating terms in C-finite sequences.

Examples of C-finite Sequences

Our first, andmost famous, example of a C-finite sequence has transcended academia
to appear in popular literature.

Example 2.4 (Virahanka-Fibonacci Numbers)

The Virahanka-Fibonacci numbers (vn) satisfy the recurrence vn+2 = vn+1 + vn with
initial conditions v0 = v1 = 1, and have generating function

V(z) =
1

1 − z − z2 = 1 + z + 2z2 + 3z3 + 5z4 + · · · .

C-finite sequences occur naturally as generating functions of combinatorial
classes whose elements are built out of a finite set of fixed objects3. Although

3 For instance, traditional Sanskrit prosody is built from short and long units containing one or two
syllables, respectively. As described by the Indian prosodist Virahanka around the 7th century AD,
the number of long-short syllable sequences containing n syllables thus satisfies the Virahanka-
Fibonacci recurrence vn+2 = vn+1+vn (simply consider whether the final unit has 1 or 2 syllables).
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satisfying a C-finite recurrence is a strong condition, some surprisingly complicated
sequences can be C-finite.

Example 2.5 (Look-and-Say Digit Sequence)

Conway’s look-and-say sequence (ln), beginning

1, 11, 21, 1211, 111221, 312211, 13112221, . . .

is obtained by starting with 1 and recording the result of reading the previous blocks
of digits from left to right (the first term contains ‘one 1’ giving the second term
11, the second term contains ‘two 1s’ giving the third term 21). A term of the form
xm1

1 xm2
2 · · · x

mk

k
with distinct consecutive bases is followed by m1 x1 m2 x2 · · ·mk xk .

The look-and-say digit sequence dn counts the number of digits of appearing
in ln, beginning with the terms

1, 2, 2, 4, 6, 6, 8, . . .

Conway [29] proved the miraculous fact that (dn) is C-finite, and gave the rational
generating function

D(z) =
G(z)
H(z)

=
1 + z + · · · + 18z77 − 12z78

1 − z + · · · − 9z71 + 6z72 .

If the starting term ‘1’ is replaced by any natural number other than the fixed point
‘22’ the resulting generating function will still be rational with denominator H.

Rational generating functions appear often in the study of lattice walks, which
will be discussed in Chapter 4. Additional examples come from counting integer
partitions whose summands come from any finite set, non-negative solutions tomany
linear Diophantine equations and inequalities, integer points in convex polyhedral
cones and scalings of convex rational polytopes, walks on finite digraphs, words in
Coxeter groups, and many other combinatorial objects. See Stanley [112], Bousquet-
Mélou [18], and Flajolet and Sedgewick [50] for these and other examples.

The class of C-finite sequences is also closed under several natural operations.

Proposition 2.5 (Closure Properties) If ( fn) and (gn) are C-finite sequences then
so are the sequences

• ( fn + gn)n≥0

•
(∑n

k=0 fkgn−k
)
n≥0

• ( fn gn)n≥0

• ( fnm+k)n≥0 for any m ∈ N and 0 ≤ k < m

Singh [107] gives a historical account of the Virahanka-Fibonacci numbers focused on the early
contributions of Indian poets and mathematicians.
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Proof If F(z) and G(z) are rational generating functions of the sequences ( fn)
and (gn), then the generating functions of ( fn + gn) and

(∑n
k=0 fkgn−k

)
are the

rational functions F(z)+G(z) and F(z)G(z), immediately giving the first two cases of
Proposition 2.5. The operation taking F(z) =

∑
n≥0 fnzn and G(z) =

∑
n≥0 gnzn and

returning (F �G)(z) =
∑

n≥0 fngnzn is known as theHadamard product of F and G.
C-finiteness of ( fngn), and thus rationality of F�G, follows fromTheorem 2.3 below.
The Hadamard product of F(z) and the rational function zk/(1 − zm) has the form
zkH(zm), where H(z) is rational and equals the generating function of ( fnm+k)n≥0.�

N-Rational Series

The following class of rational series arise frequently in combinatorial applications.

Definition 2.8 (N-rational functions) The collection of functions containing the
constant 1 and the variable z which is closed under addition, multiplication, and the
pseudo-inverse operation f 7→ 1/(1 − z f ) forms the set of N-rational functions.

Series expansions ofN-rational functions have deep importance in computer science
as the generating functions of regular languages counted by length, equivalent to
the class of languages recognized by deterministic finite automata4, a well studied
model of computation (see Rozenberg and Salomaa [95, Ch. 2] for details).

Although every N-rational function is a rational function with natural number
power series coefficients, there are rational power series with natural number coeffi-
cients which are notN-rational. Of particular interest for asymptotics is the following
necessary condition ofN-rationality given byBerstel [9], whose proof is Problem2.9.

Proposition 2.6 If F(z) is an N-rational function and σ is a dominant singularity
of F(z) then σ/|σ | is a root of unity.

Example 2.6 (A Non-N-Rational Series)

Consider the rational function

F(z) =
2(1 + 3z)2

(1 − 9z)(1 + 14z + 81z2)
=

1/2
1 − 9ze2iθ +

1/2
1 − 9ze−2iθ +

1
1 − 9z

,

where θ = arccos(1/3). Then F(z) is not N-rational by Proposition 2.6 as e2iθ

is not a root of unity. Since the denominator of F has a constant term of 1
the coefficients of F(z) are integers. In fact, basic algebraic manipulations imply
[zn]F(z) = 9n (1 + cos(2nθ)) ≥ 0 so F(z) has natural number coefficients.

4 A finite automaton over a finite set A is a directed multigraph (V, E) whose edges are labelled
by elements of A, where one vertex v ∈ V is chosen as an initial vertex and a collection Q ⊂ V
of vertices are chosen as accepting vertices. A sequence (a1, . . . , ar ) ∈ A

r for some r ∈ N is
recognized by the automaton if there is a path in the automaton from v to an element of Q whose
consecutive edges have labels a1, . . . , ar .
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Soittola [109] gave a characterization ofN-rational functions based on singularity
analysis. Barcucci et al. [5], building on Soittola’s work, gave an algorithm which
takes a rational function F(z), tests for N-rationality, and, if this test is positive,
returns a regular language whose counting sequence is the coefficient sequence of F.
In the words of those authors, this allows one to “reverse-engineer a combinatorial
problem from a rational generating function.”

As a meta-principle, generating functions of combinatorial classes seem to be
N-rational. In the proceedings for the 2006 International Congress of Mathematics,
Bousquet-Mélou [18] writes that she “never met a counting problem that would yield
a rational, but not N-rational, GF.” Koutschan [71] gave a Maple implementation of
the algorithm of Barcucci et al. and tested “about 60” sequences of combinatorial
significance with rational generating functions, finding all functions to beN-rational.
As we will soon see, this means certain deep open problems about the behaviour of
rational function coefficients can be avoided for combinatorial enumeration prob-
lems. Trying to generalize characterizations ofN-rationality to coefficient sequences
of multivariate rational functions is an open problem, discussed in Chapter 3.

Asymptotics

In addition to characterizingC-finite sequences in terms of their generating functions,
deMoivre also studied their closed-form solutions, as did Bernoulli [8] and Euler [40,
V. 1 Ch. XIII] around the same time period5. The following result gives an exact
closed-form representation for terms of sufficiently large index.

Theorem 2.3 Suppose F(z) = G(z)/H(z) ∈ Q(z) is a rational function withG and H
coprime polynomials and H(0) , 0. Let d denote the degree of H and σ1, . . . , σm

be the distinct roots of H(z) in the complex plane. Then there exist polynomials
P1(n, x), . . . , Pm(n, x) inQ[n, x], whose degrees in x are at most d, such that for all n
larger than some fixed natural number the power series coefficients of F(z) satisfy

fn =
m∑
j=1

Pj(n, σj)σ
−n
j . (2.4)

The degree of Pj(n, x) in n is one less than the order of the pole of F(z) at z = σj .
Conversely, if ( fn) has a representation of the form (2.4) then the generating func-
tion F(z) is a rational function.

Proof Theorem 2.3 is Proposition 2.3 specialized and strengthened in the case
when F(z) is rational, and their proofs are analogous. In particular, when R > 0 is

5 For instance, Euler advocated the use of partial fraction decomposition to find the general term
of a series with rational generating function.
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large enough so that all roots of H(z) lie in the disk |z | < R the Cauchy residue
theorem and maximum modulus bound imply������ fn + m∑

j=1
Res
z=σj

(
F(z)
zn+1

)������ =
���� 1
2πi

∫
|z |=R

F(z)
zn+1 dz

���� ≤ max |z |=R |F(z)|
Rn

. (2.5)

Because F(z) is rational, there exists k > 0 such that for any R sufficiently large
max |z |=R |F(z)| ≤ Rk . Thus, whenever n > k the right-hand side of (2.5) goes to
zero as R → ∞, giving (2.4). The bounds on the degrees of the Pj follow from
Lemma 2.4 in the appendix of this chapter and the fact that each σj is an algebraic
number of degree at most d.

For any k ∈ N and c, α ∈ C the generating function of the sequence fn = cnkαn is
the rational function cRk(αz), where Rk(z) is obtained by starting with the geometric
series 1/(1−z) and alternatively taking the derivative andmultiplying by z repeated k
times. Distributing the sum in (2.4) then proves the final statement. �

Gourdon and Salvy [58] give algorithms, running in polynomial time in the
degree d, for computing the polynomials Pj and determining which terms of the sum
dictate dominant asymptotics of fn. Calculating the Pj can be done symbolically
using resultants and other algebraic tools, while determining which roots of H(z) are
closest to the origin and dictate asymptotics requires numeric algorithms to separate
the algebraic numbers σj and their moduli. These algorithms may be viewed as
special cases of the machinery we develop in Chapter 7 for the multivariate setting.

Example 2.7 (Virahanka-Fibonacci Asymptotics)

The generating function of the Virahanka-Fibonacci numbers can be written

V(z) =
1

1 − z − z2 =
1
√

5

(
1
σ

1
1 − z/σ

−
1
τ

1
1 − z/τ

)
,

where σ = (−1 +
√

5)/2 and τ = (−1 −
√

5)/2 are the roots of 1 − z − z2. Thus,
expanding 1/(1 − z/σ) and 1/(1 − z/τ) as geometric series gives

vn = [zn]V(z) =
1

σ
√

5
σ−n −

1
τ
√

5
τ−n.

Similarly, the tools developed in Chapter 7 allow one to automatically prove
that the look-and-say sequence generating function D(z) admits a single dominant
singularity, necessarily real and positive, which is the root λ = .7671198507 . . . of
the denominator H(z). Since the derivative of H does not vanish at λ this is a simple
pole of D(z), and the look-and-say digit counting sequence has asymptotic behaviour

dn ∼
−G(λ)

λ (∂H/∂z)(λ)
λ−n ≈ (2.04216 . . . ) (1.30357 . . . )n.
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An automated analysis of this rational generating function was carried out by Gour-
don and Salvy [58]. Koutschan [72] showed that D(z) is N-rational.

Equation (2.4) is an exact equality, for n sufficiently large, but not every summand
will necessarily contribute to dominant asymptotics. Although this characterization
is explicit there are still significant open problems in the area, due to potentially
complicated interactions between the algebraic quantities involved.

Open Problem 2.1 (Skolem’s Problem) Is there an algorithm which takes a ratio-
nal function with integer coefficients, analytic at the origin, and determines whether
it has a power series coefficient which is zero? Equivalently, is there an algorithm
which takes a C-finite sequence over Q, defined by a linear recurrence and initial
conditions, and decides whether any term in the sequence is zero?

In the 1930s, Skolem [108] showed that if a sequence ( fn) of rational numbers6
is C-finite then the set {n : fn = 0} of indices of zero terms consists of a finite
set together with a finite set of arithmetic progressions, and this problem has es-
sentially been open since then. When the set of zero indices is infinite, meaning it
contains an arithmetic progression, this can be detected [10]. Currently, all known
proofs of Skolem’s theorem use p-adic analysis in a manner which does not give
an upper bound on the potential indices of sporadic zeroes7. Mignotte et al. [84]
and Vereshchagin [119] show Skolem’s problem is decidable for sequences satis-
fying C-finite recurrences of orders 3 or 4. As noted in Kenison et al. [70], the
crucial open case for recurrences of order 5 consists of sequences (un) of the form8

un = a(λn1 +λ
n
1 )+ b(λn2 +λ

n
2 )+ cρn where |λ1 | = |λ2 | > |ρ| with a, b, c real algebraic

numbers and |a| , |b|. Those authors give a method [70, Thm. 1.2] to determine
when C-finite sequences of any order take the value zero on terms whose indices are
prime powers.

If ( fn) is a C-finite sequence, so is the sequence ( f 2
n ). Thus, the problem of

detecting zero coefficients over Q can be reduced to deciding whether every term of
a C-finite sequence is positive. This condition can then be relaxed, motivating the
following problem which is more directly related to our asymptotic setting.

Open Problem 2.2 (Ultimate Positivity) Is there an algorithm which takes a ratio-
nal function with integer coefficients, analytic at the origin, and determines whether
its series coefficients are eventually non-negative (i.e., if there are only a finite

6 Mahler [78] and Lech [76] extended this result to sequences over the field of algebraic numbers,
and any field of characteristic zero, respectively. The theorem does not hold in finite characteristic:
for instance, if Fp denotes the finite field of prime order p then the sequence cn = (1+ x)n −1− xn

defined over K = Fp (x) satisfies a C-finite recurrence of order 3, but cn = 0 if and only if n = pk

for some k ∈ N. This counter-example is due to Lech [76].
7 Additional information on Skolem’s theorem can be found in Chapter 2 of Everest et al. [41].
8 An explicit example of such a sequence, given by Kenison et al. [70], is the sequence defined by
un+5 = −41un+4 + 952un+3 − 178360un+2 − 17673175un+1 + 17850625un with initial conditions
u0 = 9, u1 = −281, u2 = 15485, u3 = −1135097, u4 = −30999543.
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number of negative coefficients)? Equivalently, is there an algorithm which takes
a C-finite sequence over Q, defined by a linear recurrence and initial conditions,
and decides whether its terms are eventually non-negative? What if ‘non-negative’
is strengthened to ‘positive’?

Ouaknine andWorrell [89, 88] show that the Ultimate Positivity problem is decid-
able for a rational function with square-free denominator (i.e., when the denominator
and its derivative are coprime polynomials) and for an arbitrary rational function
whose denominator has degree at most 5. Those authors also show that proving
Ultimate Positivity for rational functions whose denominators have degree 6 would
give a method of computing the so-called Lagrange constant for a large collection
of transcendental numbers, a significant breakthrough in analytic number theory.

Ultimate Positivity is exactly the setting in which the Vivanti-Pringsheim Theo-
rem can be applied. Of course, when one is dealing with the generating function of
a combinatorial class then non-negativity of coefficients is guaranteed. Because of
the meta-principle that combinatorial classes always seem to have N-rational gener-
ating functions, in practice asymptotics can be effectively decided for combinatorial
problems and combinatorialists do not need to worry about these pathological decid-
ability issues. In particular, Proposition 2.6 implies that the dominant singularities of
anN-rational function differ by roots of unity, meaning their coefficients have explicit
periodic behaviour: there exists a natural numberm such that for each k = 0, . . . ,m−1
the coefficient sub-sequence ( fmn+k) has dominant asymptotics of the formCk nαk ρn

k
where αk is a computable natural number andCk and ρk are algebraic constants with
computable minimal polynomials. Flajolet et al. [49] give a similar characterization
for dominant singularities of combinatorial classes obtained from a large collection
of recursive ‘constructions’.

2.3 Algebraic Power Series

We next examine series satisfying polynomial equations. Throughout this section
we assume that K is an algebraically closed field of characteristic zero, of which the
most important cases are K = A, the field of algebraic numbers over Q, and K = C.
We will see how bivariate polynomials can be used as data structures for algebraic
functions, and how algebraic tools can be leveraged to create algorithms for coeffi-
cient asymptotics. In particular, the potential singularities of an algebraic function
can be characterized, after which asymptotics can be ‘read off’ from local expansions
near the singularities. In order to solve algebraic equations we must consider more
general objects than power series.
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Laurent and Puiseux Series Expansions

First, we note that to solve equations such as zF(z) = 1 it is necessary to introduce
series expansions with negative exponents.

Definition 2.9 (formal Laurent series) The field of formal Laurent series over K,
denoted K((z)), consists of formal series with potentially negative integer exponents
bounded from below,

K((z)) =

{ ∑
n≥N

anzn : N ∈ Z, aj ∈ K for all j

}
,

with term-wise addition and Cauchy product.

Problem 2.5 implies that K((z)) is the field of fractions of the ring of formal power
series K[[z]]. In a similar fashion, to solve algebraic equations such as F(z)R = z
using formal series we must introduce fractional exponents.

Definition 2.10 (formal Puiseux series) The field of formal Puiseux series, de-
noted Kfra((z)), consists of the set of formal series

Kfra((z)) =

{ ∑
n≥N

anzn/R : N ∈ Z, R ∈ N>0, aj ∈ K for all j

}
with term-wise addition and Cauchy product.

The variables appearing in a Puiseux series have rational exponents that are
bounded from below and have fixed denominators, so expressions such as

∑
n≥0 z−n

and
∑

n≥1 z1/n are not Puiseux series. Although Kfra((z)) does not include all series
with rational exponents, it is adequate to describe the solutions of any algebraic
equation. The following result dates back to Newton [85] and Puiseux [94]; a proof
can be found in Walker [122, Sect. 3].

Proposition 2.7 (Puiseux’s Theorem) Let K be an algebraically closed field of
characteristic zero. Then Kfra((z)) is the algebraic closure of K((z)).

Definition 2.11 (algebraic series and minimal polynomials) A formal series
F(z) ∈ Kfra((z)) is algebraicoverK if there exist polynomials p0(z), . . . , pd(z) ∈ K[z],
not all zero, such that

pd(z)F(z)d + pd−1(z)F(z)d−1 + · · · + p0(z) = 0.

If F(z) is algebraic, aminimal polynomial of F is any non-zero polynomial P(z, y) ∈
K[z][y] of minimal degree in y with coefficients inK[z] such that P(z, F(z)) = 0; this
is unique up to a non-zero multiple of K[z]. The Puiseux series roots of a minimal
polynomial of F are called the conjugates of F. A series which is not algebraic is
called transcendental.
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Just as the minimal polynomial x2 − 2 of
√

2 over Q also admits −
√

2 as a root,
a general algebraic series F(z) must be encoded by its minimal polynomial together
with additional information to distinguish F among its conjugates. Even when F is
a power series its conjugates can contain negative and fractional powers.

Example 2.8 (Rooted Binary Trees)

A rooted binary plane tree is a rooted tree (including the empty tree) where every
vertex has two (possibly empty) ordered binary plane trees as children. From this
recursive definition it can be shown that the generating function C(z) of such trees,
counted by their number of vertices, satisfies P(z,C(z)) = 0 where

P(z, y) = zy2 − y + 1.

By Puiseux’s Theorem we know there are two formal series solutions to P(z, y) = 0.
Let f (z) = ar zr + · · · for some r ∈ Q with ar , 0 and algebraic coefficients aj ∈ A
to be determined, where ‘· · · ’ hides terms with strictly larger exponents. Substitution
into the equation P(z, f (z)) = 0 gives

0 = z (ar zr + · · · )2 − (ar zr + · · · ) + 1 =
(
a2
r z2r+1 + · · ·

)
− (ar zr + · · · ) + 1. (2.6)

In order for this equality to hold, every term on the right hand side of (2.6) must
cancel. In particular, there must be at least two terms whose exponent of z is minimal,
and these terms must cancel. Thus, either

2r + 1 = r < 0 and a2
r − ar = 0 (z2r+1 and zr are minimal)

or 2r + 1 = 0 < r and a2
r + 1 = 0 (z2r+1 and z0 are minimal)

or r = 0 < 2r + 1 and − ar + 1 = 0 (zr and z0 are minimal).

In the first case, r = −1 and ar = a−1 = 1 since ar , 0 by assumption. The second
case cannot occur, but the third can when r = 0 and ar = a0 = 1. Thus, we have
found the start of two series expansions

f1(z) = z−1 + · · · and f2(z) = 1 + · · ·

such that P(z, f1) = P(z, f2) = 0. Substituting these starting terms back in (2.6)
allows one to repeat the process and obtain further terms in the series expansions.
For example, when r = −1 and a−1 = 1 then repeated back substitution shows
the next non-zero term is a0z0 with a0 = −1, followed by a1z with a1 = −1, etc.
Puiseux’s theorem implies that this process of extending a partial expansion must
succeed, giving solutions

f1(z) = z−1−1− z−2z2−5z3+ · · · and f2(z) = 1+ z+2z2+5z3+14z4+ · · ·

to P(z, f1) = P(z, f2) = 0.
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This computational procedure of extending truncated series solutions can be au-
tomated, a process known as the Newton polygon method (see, for example, Walker’s
proof [122] of Puiseux’s Theorem). The name comes from the use of a polygon
defined by the exponents of monomials in P(z, y) to determine the potential starting
indices of solutions. There are several computer algebra packages that can compute
Puiseux series solutions of equations, such as the gfun package [101] in Maple.

Example 2.9 (Rooted 3-Ary Trees)

A rooted 3-ary plane tree is a rooted tree where every vertex has three ordered 3-ary
plane trees as children. The generating function F(z) of 3-ary plane trees satisfies

P(z, F(z)) = 0, P(z, y) = zy3 − y + 1.

There are now three solutions,

f1(z) =
1

z1/2 −
1
2
−

3z1/2

8
+ · · · , f2(z) =

−1
z1/2 −

1
2
+

3z1/2

8
+ · · · ,

and
f3(z) = 1 + z + 3z2 + 12z3 + · · ·

satisfying P(z, f1) = P(z, f2) = P(z, f3) = 0. Even though the generating function f3
is a power series, its conjugates f1 and f2 have fractional exponents.

When working over the complex numbers there is a useful analytic version of
Puiseux’s Theorem involving convergent series. When moving from formal to ana-
lytic considerations, we account for branch cuts of algebraic functions by considering
series in disks with rays removed (the appendix to this chapter contains additional
details on branch cuts).

Definition 2.12 (slit disks) A slit disk centred at z = ω is a disk |z −ω | < R centred
at ω with a ray {ω + ta : t > 0} removed, for any R > 0 and a ∈ C \ {0}.

See Hille [66, Ch. 12] for a proof of the following.

Proposition 2.8 (Puiseux’s Theorem, Analytic Version) Let P(z, y) ∈ Q[z, y] be
an irreducible polynomial of degree R in y, and let ω ∈ C. Then in a sufficiently
small slit disk centred at ω there exist R convergent Puiseux series expansions

yk(z) =
∑
n≥N

c(k)n (1 − z/ω)n/R, 1 ≤ k ≤ R

with P(z, yk(z)) = 0 for each 1 ≤ k ≤ R, where the branch of (1 − z/ω)1/R is fixed
in the slit disk and all coefficients c(k)n are algebraic numbers.

The point z = ω is a singularity of one of the analytic functions defined by these
expansions if and only if the corresponding expansion is not a power series.
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The coefficients in such a convergent Puiseux series can be determined by applying
the Newton polygon method to the polynomial Q(t, y) = P(ω(1 − t), y) to obtain
Puiseux series in t and then substituting t = 1 − z/ω. We consider these expansions
to be centred at z = ω as they converge in a slit disk centred at ω.

Example 2.10 (Puiseux Expansions I)

To find convergent Puiseux series solutions of P(z, y) = zy2 − y + 1 centred at
z = 1/4, we can find the Puiseux series solutions of

P((1 − t)/4, y) = (1 − t)y2/4 − y + 1 = 0

at t = 0, and then substitute t = 1− 4z. The Newton polygon method gives solutions

2 + 2t1/2 + 2t + 2t3/2 + · · · = 2 + 2 (1 − 4z)1/2 + 2 (1 − 4z) + 2 (1 − 4z)3/2 + · · ·

and

2 − 2t1/2 + 2t − 2t3/2 + · · · = 2 − 2 (1 − 4z)1/2 + 2 (1 − 4z) − 2 (1 − 4z)3/2 + · · ·

Taking the principal branch of the square-root function t1/2, these series converge
in the slit disk where |1 − 4z | < 1 and z is not a real number larger than 1/4 (so
that 1 − 4z is not real and negative).

An algebraic generating function is encoded by a polynomial P(z, y) ∈ Z[z, y],
but P also encodes other algebraic series. We now discuss how to separate a specific
series of interest from the other roots of P.

Definition 2.13 (singular parts and separation orders) Let P(z, y) ∈ Z[z, y] and
suppose f (z) =

∑
n≥N cnzn/R satisfies P(z, f (z)) = 0. The singular part of f is the

initial partial sum fI (z) =
∑`

n=N cnzn/R, where ` ≥ N is the minimal integer such
that fI is not equal to an initial partial sum of any other Puiseux series expansion y(z)
with P(z, y(z)) = 0. The separation order of f (z) with respect to P is the integer `.

The following result, found in Walsh [123], not only bounds the separation order
but also shows how it can be used to determine the smallest field extension of Q
containing all coefficients of a Puiseux series expansion.

Proposition 2.9 Let P(z, y) ∈ Q[z, y] be an irreducible polynomial in y of degree dy
in y and degree dz in z, and f (z) =

∑
n≥N cnzn/R satisfy P(z, f (z)) = 0. If the

separation order of f with respect to P is ` then ` ≤ 2dzdy(2dy − 1) and all Puiseux
series coefficients cN, cN+1, . . . of f lie in the finite extension Q(cN, . . . , c`).

Knowing that the coefficients of each Puiseux series expansion lie in a finite extension
of Q is necessary for computation.

Example 2.11 (Puiseux Expansions II)
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The Puiseux series solutions of

P(z, y) = (z + 1/4)y2 − y + 1

begin
2 + 4iz1/2 − 8z + · · · and 2 − 4iz1/2 − 8z + · · · .

Since these series are separated by their truncations at order 2, all coefficients of
both Puiseux series expansions lie in Q(2,±4i) = Q(i).

Later, in our arguments on lattice path enumeration, we will need to determine
how many Puiseux series solutions of an algebraic equation are fractional power
series (i.e., contain no negative exponents). The following result gives an answer.

Proposition 2.10 Let P(z, y) = p0(z) + p1(z)y + · · · + pd(z)yd ∈ Q[z][y] be a
polynomial of degree d in y such that pj(0) , 0 for at least one index j. Then the
number of series solutions to P(z, y) = 0 in y at z = 0 which are fractional power
series equals the maximum index j such that pj(0) , 0.

A proof of Proposition 2.10, which involves algebraic manipulations of Puiseux
expansions, can be found in Stanley [110, Prop. 6.1.8].

Singularities of Algebraic Curves

We now determine the points where the solution of an algebraic equation can have a
singularity, in order to apply the techniques of analytic combinatorics to determine
coefficient asymptotics. This requires some algebraic tools.

Definition 2.14 (resultants and discriminants) Given polynomials

p(x) = a0 + a1x + · · · + adxd and q(x) = b0 + b1x + · · · + bexe

over an integral domain R, where ad, be , 0, the resultant of p and q with respect
to x is

Resultantx(p, q) = ae
d bde

∏
p(α)=q(β)=0

(α − β),

where α and β run through the roots of p and q in an algebraic closure of R. The
discriminant of p(x) with respect to x is the quantity

Discx(p) =
(−1)d(d−1)/2

ad
Resultantx(p, p′),

where p′(x) is the derivative of p(x) with respect to x.

Problem 2.14 asks you to prove that the resultant lies in R, and gives an algorithm
for its calculation. Note that the resultant of p and q is zero if and only if p and q
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share a root in any algebraic closure of R. Thus, the discriminant Discx(p) is zero if
and only if p has a multiple root in any algebraic closure of R. Both the resultant and
discriminant can be calculated by any major computer algebra system using efficient
algorithms [121, Ch. 6] (the cost is not much greater than polynomial multiplication).

Now, let
P(z, y) = pd(z)yd + pd−1(z)yd−1 + · · · + p0(z)

be an irreducible polynomial in Q[z][y] of degree d in y. For fixed a ∈ C the
polynomial P(a, y) has d solutions for y in the complex plane unless pd(a) = 0
or P(a, y) has a multiple root in y, meaning Discy(P) ∈ Q[z] vanishes at z = a.

Definition 2.15 (exceptional sets) The exceptional set of P(z, y) ∈ Z[z, y] is the
finite set Ξ = Ξ(P) = {z ∈ C : pd(z) = 0 or Discy(P)(z) = 0}.

For any a ∈ C \ Ξ the polynomial P(a, y) has d distinct solutions in y, and the
implicit function theorem (described in a more general context in Proposition 3.1 of
Chapter 3) implies the existence of analytic functions y1(z), . . . , yd(z) defined in a
neighbourhood of z = a such that y1(a), . . . , yd(a) are the solutions of P(a, y) = 0.

Definition 2.16 (branches and algebraic functions) Each analytic function yj(z)
in the proceeding paragraph defines a branch of the curve P(z, y) = 0 in any simply
connected region of the complex plane where it is analytic. An algebraic function
on a domain Ω is any function on Ω which is a branch of some algebraic curve.

One immediate consequence of the implicit function theorem is the following.

Lemma 2.2 If z = a is a singularity of a branch of P(z, y) then a ∈ Ξ.

Vanishing of pd(z) corresponds to branches going off to infinity: if pd(a) = 0 then
the collection of Puiseux series solutions to F(z, y) at z = a can contain series with
negative exponents. Vanishing ofDiscy(P)(z) corresponds to two branches colliding:
if Discy(P)(a) = 0 then the collection of Puiseux series solutions to F(z, y) at z = a
can contain series with non-integer fractional powers coming in sets of conjugates.

Example 2.12 (Singularities for Plane Trees)

The generating function for the number of rooted binary plane trees is a branch of

P(z, y) = zy2 − y + 1.

Then Discy(P) = 1 − 4z, so that

Ξ = {z : z = 0 or 1 − 4z = 0} = {0, 1/4}.

We have already seen that one Puiseux series solution of P(z, y) = 0 at the origin
is a Laurent series with negative exponents, which corresponds to the vanishing of
the leading coefficient of y, and that the series solutions centred at z = 1/4 contain
non-integer powers due to the vanishing of the discriminant.

The generating function for the number of rooted 3-ary plane trees is a branch of
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Fig. 2.3 When F(z) behaves like an algebraic branch point near its unique dominant singularity
z = ω, the domain of integration in the Cauchy integral can be deformed around the corresponding
branch cut R (dotted) to obtain an open circle and small lip C1 which can be made arbitrarily
close to ω (black) together with a collection of points C2 whose moduli are bounded above |ω |
(gray). The Puiseux expansion of F(z) is a good approximation when C1 is sufficiently close to ω,
which allows for the transfer of coefficient asymptotics, while the Cauchy integrand is exponentially
smaller than ω−n on C2.

P(z, y) = zy3 − y + 1,

which has as its Puiseux series solutions at the origin the power series

1 + z + 3z2 + 12z3 + 55z4 + · · ·

together with the fractional Puiseux series

z−1/2 −
1
2
−

3
8

z1/2 +
1
2

z + · · · and − z−1/2 −
1
2
+

3
8

z1/2 +
1
2

z + · · · .

Here Discy(P) = z(4−27z), so that both the discriminant and the leading coefficient
of P vanish at the origin. This helps explain the existence of two series with non-
integer powers which are negative.

Asymptotic Behaviour

Suppose F(z) is analytic at the origin and has a single dominant singularity z = ω,
where it behaves like an algebraic branch point. The key to determining asymptotics
is to deform the domain of integration in the Cauchy integral (2.1) around the
singularity ω without crossing the corresponding branch cut; see Figure 2.3. Away
from the singularityω, the domain of integration can be deformed so that the Cauchy
integrand in (2.1) is exponentially smaller than ω−n. Near the singularity F behaves
like its Puiseux expansion, so coefficient asymptotics of F(z) can be determined
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from the terms in its Puiseux expansion. In particular, coefficient asymptotics of a
summand (1−z/ω)α follows from the binomial theorem and Stirling’s approximation
for the gamma function, and these asymptotic expansions can be summed to give
an asymptotic expansion for the coefficients of F(z). A rigorous version of this
argument, yielding the following result, can be found in Flajolet and Odlyzko [48].

Proposition 2.11 (Darboux’s Theorem) Suppose F(z) =
∑

n≥0 fnzn is analytic in
some open disk around the origin except for a single dominant singularityω ∈ C\{0}
and points in the ray Rω = {tω : t ≥ 1}, such that

F(z) =
∑
k≥N

ck(1 − z/ω)k/R

is a convergent expansion of F in a disk centred at ω with Rω removed. Then each
summand ck(1 − z/ω)k/R with k/R < N adds an asymptotic contribution

ckω−n
Γ(n − k/R)

Γ(−k/R) Γ(n + 1)
∼ ckω−n

n−k/R−1

Γ(−k/R)

to fn, where Γ is the Euler gamma function. In particular, for all M ≥ 0

fn =
ω−n

Γ(n + 1)

(
N+M∑
k=N

ck
Γ(n − k/R)
Γ(−k/R)

+O
(
n−(M+1)/R

))
where Γ(n−k/R)

Γ(−k/R) = 0 if k/R ∈ N, and fn ∼ cpω−n n−p/R−1

Γ(−p/R) where p is the smallest
index such that cp , 0 and p/R < N. If there are a finite number of dominant
singularities, each of this form, then asymptotics of fn are determined by adding the
asymptotic contributions given by each.

Note that Proposition 2.11 only requires the function F(z) to behave locally like an
algebraic function near its dominant singularity (in the sense that it has a convergent
Puiseux expansion).

Example 2.13 (Asymptotics of 2-Regular Simple Graphs)

A graph is 2-regular if every vertex has degree 2, and simple if the graph contains
no loops or multiple edges between any pair of vertices. If gn denotes the number
of 2-regular simple graphs on n vertices where each vertex has a distinct label, then
generating function arguments (found in Wilf [125], for instance) imply

F(z) =
∑
n≥0

gn

n!
zn =

e−z/2−z
2/4

√
1 − z

.

Because F(z) has a unique dominant singularity at the point z = 1, where its Puiseux
expansion begins F(z) = e−3/4(1−z)−1/2+· · · , Proposition 2.11 immediately implies
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gn

n!
∼ e−3/4 n−1/2

Γ(1/2)
=

e−3/4
√

nπ
.

This example is also studied by Flajolet and Odlyzko [48].

Because every algebraic function satisfies the hypotheses of Proposition 2.11, this
gives a strong characterization of their asymptotic behaviour.

Corollary 2.1 Let F(z) =
∑

n≥0 fnzn be a branch of an algebraic equation which is
analytic at the origin and has dominant singularities ω0β, . . . , ωm−1β where β > 0
and |ωj | = 1 for each j. Then

fn =
βn ns

Γ(s + 1)

m−1∑
j=0

Cjω
n
j +O(βnnt ),

where s ∈ Q \ {−1,−2, . . . }, t < s, and β, the ωj , and the Cj are algebraic.

Checking for incompatible asymptotic behaviour of coefficients, or the existence
of an infinite number of singularities, gives a powerful test of function transcendence
which is not available for constants.

Example 2.14 (A Transcendental Series)

If F(z) = (1− 4z)−1/2 then a straightforward application of the generalized binomial
theorem implies F(z) =

∑
n≥0

(2n
n

)
zn and Proposition 2.11 shows

(2n
n

)
∼ 4n/

√
πn.

The function G(z) =
∑

n≥0
(2n
n

)2
zn is also analytic at the origin, but(

2n
n

)2
∼

16n

πn

so G(z) is not algebraic by Corollary 2.1. See Problem 2.10 for a generalization.

Automated Asymptotics: A Solvable Connection Problem

Let P(z, y) ∈ Q[z, y] and F(z) =
∑

n≥0 fnzn be a branch of P which is analytic at
the origin, specified by enough power series coefficients to distinguish it from the
other branches of P. In order to determine dominant asymptotics of fn, we must
identify the dominant singularities of F and find its local behaviour near each to
apply Proposition 2.11. Any singularity of F lies in the (finite) exceptional set Ξ, but
we need to be able to determine which elements of Ξ are singularities of F (and not
singularities of other branches or spurious points where all branches are analytic).
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Fig. 2.4 Plot of the real solutions to zy2 − y + 1 = 0 with the values of Ξ marked. At the origin
one branch of the solution goes to infinity, while at z = 1/4 the two branches collide.

Given a ∈ Ξ we can use the Newton polygon method to compute series solutions
to P(z, y) = 0 which are analytic in a neighbourhood of a, potentially minus a or
a ray starting at a, and then identify the singular branches at a by finding those
with non-integer or negative exponents. Since we know the series expansion of the
generating function F at the origin, we are thus trying to solve a connection problem:
given series expansions of branches of P(z, y) = 0 around two distinct points, can
we pair up the series in such a way as to be consistent among branches? Since
series expansions capture local behaviour of a function, being able to solve this
connection problem means capturing global behaviour about branches of P from
their local behaviour.

Example 2.15 (Catalan Asymptotics)

Recall again the generating function for the number of rooted binary plane trees,
which is the unique power series root of

P(z, y) = zy2 − y + 1

at the origin. Near the origin the branches of P(z, y) are represented by the expansions

f1(z) = C(z) = 1 + z + 2z2 + 5z3 + · · · f2(z) = z−1 − 1 − z − 2z2 + · · ·

while around the point z = 1/4 the branches are represented by the expansions

g1(z) = 2 + 2 (1 − 4z)1/2 + · · · g2(z) = 2 − 2 (1 − 4z)1/2 + · · · .

Thus C(z) must have a singularity at z = 1/4, but is it locally represented by g1
or g2? If C(z)was represented by g1 near z = 1/4 then Proposition 2.11 would imply

cn ∼ (2) 4n
n−3/2

Γ(−1/2)
= −

4n

n3/2√π
,

which is impossible as cn has non-negative terms. Thus, C(z) corresponds to g2 and
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Fig. 2.5 Real parts of branches of the algebraic curve P(z, y) = y4−2y3+(1+2z)y2−2yz+4z3 = 0.
The discriminant of P vanishes at z = 1/4, 0, and z = (−1±

√
5)/8, corresponding to the intersection

of at least two of the branches.

cn = (−2) 4n
(

n−3/2

Γ(−1/2)
+O

(
1
n

))
= 4n

(
1

n3/2√π
+O

(
1
n

))
.

In fact, the quadratic formula implies C(z) = 1−
√

1−4z
2z , so

cn = (−1/2)[zn+1](1 − 4z)1/2 =
4n
√
π

Γ(n + 1/2)
Γ(n + 2)

,

which is simply a restatement of the well known formula cn = 1
n+1

(2n
n

)
.

Such heuristic arguments do not always apply, and more involved techniques are
usually required.

Example 2.16 (The Connection Problem for Supertrees)

The generating function F(z) of the combinatorial class of bicoloured supertrees is
the branch y = F(z) of the algebraic curve

P(z, y) = y4 − 2y3 + (1 + 2z)y2 − 2yz + 4z3

whose power series expansion at the origin begins F(z) = 2z2 + 2z3 + · · · (see
Flajolet and Sedgewick [50, Ex. VI.10] for details). Figure 2.5 shows the real parts
of the branches defined by P(z, y) = 0. The set of potential singularities of F(z),

Ξ =
{
0, 1/4,

(
−1 ±

√
5
)
/8

}
,

is defined by the vanishing of the discriminant. Using only local information about F
at the origin (its initial power series terms look like a quadratic function) we can
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identify F with the dark curved branch in Figure 2.5. Tracing this branch from the
origin across the positive real numbers shows that F(z) admits a single dominant
singularity at z = 1/4.

Tracing along curves can be formally captured by algorithms for real numeric
continuation, but we now outline a different approach for combinatorial generating
functions which is simpler and more efficient. Because F(z) has non-negative power
series coefficients, the Vivanti-Pringsheim theorem implies one of its dominant
singularities is real and positive. At the origin, the branches have power series
expansions

A1(z) = 1 − 2z2 + · · · A2(z) = 1 − 2z + · · ·

A3(z) = 2z + 2z2 + · · · A4(z) = F(z) = 2z2 + 2z3 + · · · .

Note that all branches are analytic even though the branches intersect: intersection
is a necessary condition for singularities of branches not going to infinity, but not a
sufficient one. At the first potential positive singularity, ρ = (

√
5−1)/8, the branches

have Puiseux expansions

B1(z) =
1
2
+

√
5 −
√

5
4

√
1 − z/ρ + · · · , B2(z) =

2 +
√

10 −
√

2
4

−

√
10 − 4

√
2

16
(1 − z/ρ) + · · ·

B3(z) =
1
2
−

√
5 −
√

5
4

√
1 − z/ρ + · · · , B4(z) =

2 −
√

10 +
√

2
4

+

√
10 − 4

√
2

16
(1 − z/ρ) + · · · ,

while at z = 1/4 they have Puiseux expansions

C1(z) =
1
2
+

1
2
(1 − 4z)1/4 + · · · C2(z) =

1
2
−

1
2
(1 − 4z)1/4 + · · ·

C3(z) =
1
2
+

i
2
(1 − 4z)1/4 + · · · C4(z) =

1
2
−

i
2
(1 − 4z)1/4 + · · ·

Our goal is to determine which of the expansions Bj(z) andCk(z) correspond to F. In
particular, we want to determine whether F corresponds to one of the expansions B2
and B3 which are singular at z = ρ, or if the dominant singularity of F is z = 1/4.

The key is to use the fact that the real branches of P(z, y) can be sorted at real
points, and their relative orders do not change between elements of Ξ. To begin, we
note that if r > 0 is sufficiently small then looking at the initial terms of the series
expansions of the Aj shows

A1(r) > A2(r) > A3(r) > A4(r).

Similarly, if s < ρ is sufficiently close to ρ then looking at the initial terms of the
series expansions of the Bj shows

B2(s) > B1(s) > B3(s) > B4(s).
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Because the real branches of P can only cross at elements of Ξ, the relative orders
of the branches at z = r and z = s must be equal. Since A1(r) and B2(s) are largest
in the orderings, A1(z) and B2(z) are expansions of the same branch; the rest of
the branches pair up as (A2, B1), (A3, B3), and (A4, B4). In particular, as the series
expansion of F around z = 0 is A4 its series expansion near z = ρ is the power
series B4, and z = ρ is not a singularity of F(z).

Continuing this process, we take t > ρ to be sufficiently close to ρ. Only the
branches B2(z) and B4(z) are real for z > ρ, and examining their initial series terms
shows

B2(t) > B4(t).

If u < 1/4 is sufficiently close to 1/4 then examining the initial series terms of
the Cj(z) shows that only C1(u) and C2(u) are real, and that

C1(u) > C2(u).

Since F(z) is represented by B4(z) near z = ρ, and the relative orders of the real
branches do not change between elements of Ξ, we have determined that z = 1/4 is
the unique dominant singularity of F(z), where it has the convergent expansion

F(z) = C2(z) =
1
2
−

1
2
(1 − 4z)1/4 + · · ·

in a slit disk. Proposition 2.11 then implies the number fn of bicoloured supertrees
of size n has dominant asymptotics

fn = 4n n−5/4 −1/2
Γ(−1/4)

+O(4nn−3/2) =
4n

n5/4 8Γ(3/4)
+O(4nn−3/2).

An analysis of bicoloured supertrees using this approach was carried out in the thesis
of Chabaud [21]. DeVries [36] gave an alternative analysis using the multivariate
machinery discussed in Chapters 3 and 5.

This branch sorting algorithm can be applied to any algebraic function F(z) with
non-negative power series coefficients at the origin. As in the example, one sorts the
Puiseux series solutions of an annihilating polynomial P(z, y) = 0 which take real
values between positive elements of the exceptional set Ξ, and uses the fact that their
relative orders don’t change between potential singularities to link local behaviour
of expansions at one point to those at another. Proposition 2.9 allows us to determine
which branches are real, and sorting can be done through a lexicographical ranking
of series by their coefficients since the lower order terms in a Puiseux series dominate
local asymptotic behaviour.

Example 2.17 (Kreweras Lattice Walks)
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Let A(z) be the generating function for the number an of lattice walks beginning
at the origin, staying in N2, and taking n steps in S = {(−1, 0), (0,−1), (1, 1)}. This
lattice path model was studied by Kreweras [74] in the 1960s, who gave a simple
formula for walks ending at the origin and a more complicated expression for walks
ending anywhere in N2. Gessel [55] proved that A(z) is algebraic (in fact, he proved
the stronger result that the trivariate generating function counting walks by length
and x and y endpoint is algebraic). Bousquet-Mélou [17] used the kernel method,
which we study in detail in Chapter 4, to derive algebraic equations and enumerate
these walks. In particular, the generating function A(z) satisfies P(z, A(z)) = 0 where

P(z, y) = z5(3z − 1)3y6 + 6z4(3z − 1)3y5 + z3(3z − 1)(135z2 − 78z + 14)y4

+ 4z2(3z − 1)(45z2 − 18z + 4)y3 + z(3z − 1)(135z2 − 26z + 9)y2

+ 2(3z − 1)(27z2 − 2z + 1)y + 43z2 + z + 2.

Computing the discriminant shows that the exceptional set of P consists of 0,−1, 1/3,
and the two non-real roots of the polynomial 9z2 + 3z + 1, so A(z) has a unique
dominant singularity at z = 1/3. The Newton polygon method shows that there are
two Puiseux series solutions of P(z, y) = 0 at the origin which have real coefficients,

−2z−1 − 1 − z − 3z2 + · · · and 1 + z + 3z2 + 7z3 + · · · ,

and two real Puiseux series solutions at z = 1/3 which have real coefficients,

2
√

2(1 − 3z)−1/4 − 3 + · · · and − 2
√

2(1 − 3z)−1/4 − 3 + · · · .

Since A(z) is the real branch of P(z, y) = 0 which is larger just to the right of the
origin, it is the larger real branch just to the left of z = 1/3, and the expansion of
A(z) in a slit disk at z = 1/3 begins with 2

√
2(1 − 3z)−1/4. Proposition 2.11 then

implies an ∼ 3nn−3/4(2
√

2)/Γ(1/4).

More generally, for series with negative coefficients, rigorous numerical methods
can be used. There exist bounds (discussed in the appendix to Chapter 7) on how
close the values of the branches to P(z, y) = 0 can be at a point z = a, depending only
on P and a. Since the series expansion of F(z) at the origin is convergent whenever z
has smaller modulus than its dominant singularities, one can iterate through the
elements of Ξ in order of increasing modulus and numerically approximate F and
the branches near each potential singularity to a sufficient accuracy to decide which
branch corresponds to F. Full details of both approaches can be found in the PhD
thesis of Chabaud [21]. The Sage package of Mezzarobba for numeric analytic
continuation of D-finite functions, discussed in Section 2.4 below, can be used for
the necessary numeric computations.

Once the dominant singularities of an algebraic generating function are deter-
mined, an asymptotic expression for its coefficients can be computed using Propo-
sition 2.11. The decidability issues related to Skolem’s Problem for dominant co-
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efficient asymptotics of rational generating functions are still in play for algebraic
functions, but such pathological considerations do not typically appear in combina-
torial applications.

Examples of Algebraic Series and N-Algebraicity

As briefly seen in the above examples, combinatorial structures which admit a re-
cursive decomposition based on collections of smaller objects of the same type are
those that tend to have algebraic generating functions. There are a wealth of com-
binatorial applications, including the enumeration of many types of lattice paths,
pattern-avoiding permutations, trees, planar maps on surfaces, polyominoes, dissec-
tions of polygons, sequences arising in bioinformatics, and tiling problems.Algebraic
functions over a field of characteristic p have connections to p-automatic sequences
in theoretical computer science and the combinatorics of words. These examples,
and more, can be found in Stanley [110], Bousquet-Mélou [18], and Banderier and
Drmota [4]. Algebraic functions also have many closure properties.

Proposition 2.12 The set of algebraic series forms a field: the sum, difference,
product, and quotient (when the denominator is non-zero) of two algebraic series a(x)
and b(x) is algebraic. Annihilating polynomials for a(x)+b(x), a(x)−b(x), a(x)b(x),
and a(x)/b(x) can be computed from annihilating polynomials for a(x) and b(x).

Problem 2.15 guides the reader through a proof of Proposition 2.12.
Using resultants to eliminate variables, any component of a solution of a non-

trivial algebraic system of equations is also algebraic.

Definition 2.17 (N-algebraic series) A proper N-algebraic system is a polynomial
system of the form 

y1 = P1(z, y1, . . . , yd)
...

yd = Pd(z, y1, . . . , yd)

where each Pi has natural number coefficients, no constant term, and [yi]Pi = 0.
A univariate series y(z) is N-algebraic if there exists a constant c0 ∈ N and power
series solution (y1, . . . , yd) ∈ N[[z]]d of some proper N-algebraic system such
that y(z) = c0 + y1(z).

Just as N-rational series appear as generating functions when counting words in
regular languages, N-algebraic series appear in the study of context-free languages,
a superset of regular languages which are recognized by ‘pushdown’ automata.
Chomsky and Schützenberger [23] proved that the generating function counting
words in any non-ambiguous context-free language by length is N-algebraic, and
conversely any N-algebraic generating function counts the number of words in some
non-ambiguous context-free language by length. Flajolet [46] used this enumerative
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approach to easily prove the ambiguity of several families of context-free languages,
a typically hard task. See Chapter 3 of [95] for more details on these topics.

Traces of the modern Symbolic Method, which allows one to convert a combina-
torial description of a family of objects into a generating function specification, can
be found in the Delest-Viennot-Schützenberger (DVS) methodology [34]. The DVS
methodology, dating back to Schützenberger’s work on formal language theory,
states roughly that to enumerate a combinatorial class one should try to: construct
a bijection to a context-free language, determine a context-free grammar generating
that language, then deduce an algebraic equation for the number of objects under
consideration using the rules of the grammar. This approach and the techniques it
has inspired have been extremely influential in enumerative combinatorics.

Banderier and Drmota [4] classify the dominant asymptotic behaviour of N-
algebraic series, giving a tool for disproving N-algebraicity of generating functions.
Subdominant asymptotic terms can be harder to get a handle on, a consequence of
the fact that every algebraic power series with integer coefficients is the difference
of two N-algebraic series [4, Prop. 2.6]. Currently, a complete classification of
N-algebraicity is not known.

Open Problem 2.3 (Decidability of N-Algebraicity) Is there an algorithm which
takes an algebraic series with natural number coefficients, specified by an annihi-
lating polynomial and initial terms, and determines whether it is N-algebraic?

2.4 D-Finite Power Series

Wenow turn to a class of generating functions encoded by linear differential equations
over a field K of characteristic zero. Just as polynomials are data structures for
algebraic series, differential equations are data structures for these series.

Definition 2.18 (D-finite series and functions) The derivative of a formal power
series F(z) =

∑
n≥0 fnzn is the formal series d

dz F(z) =
∑

n≥1(n fn)zn−1. We
call F(z) differentially finite (D-finite) over K if there exist a0(z), . . . , ar (z) ∈ K[z]
with ar (z) , 0 such that

ar (z)
dr

dzr
F(z) + ar−1(z)

dr−1

dzr−1 F(z) + · · · + a0(z)F(z) = 0. (2.7)

If K ⊂ C then an analytic function F(z) is called D-finite if it satisfies an equation
of the form (2.7) when defined. If d is the maximum degree of the coefficient
polynomials aj(z) then we call (2.7) a D-finite equation of order r and degree d.
Equivalently, F(z) is D-finite if and only if all derivatives F, F ′, F ′′, F ′′′, . . . form
a finite dimensional vector space over the field of rational functions K(z). We often
write F(r) for the rth derivative dr

dzr F(z).

Example 2.18 (D-finite Transcendental Function)
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The function F(z) = ez =
∑

n≥0 zn/n! is not algebraic (for instance, because its
asymptotic growth does not satisfy the conditions of Corollary 2.1) but satisfies
F ′(z) − F(z) = 0, so F is D-finite.

Remark 2.2 Suppose F(z) satisfies a non-homogeneous D-finite equation of the
form L(F) = c(z), where L(F) = ar (z)F(r)(z) + · · · + a0(z)F(z) and c(z) ∈ K[z].
Then c(z) ddzL(F) − c′(z)L(F) = 0, so any function satisfying a non-homogeneous
D-finite equation of order r also satisfies a homogeneous equation of order r + 1.

D-finite equations are oftenmanipulated in computer algebra systems by encoding
them as elements of a non-commutative ring.

Definition 2.19 (Weyl algebra) The Weyl algebra W over K is the K-algebra
K〈z, δ〉/〈δz− zδ− 1〉, consisting of K-linear combinations of monomials containing
powers of z and δ such that z and δ don’t commute but satisfy δz = zδ+1. We let the
elements ofW act onK[[z]] by defining z ·F = zF and δ ·F = F ′; the commutation
rule for z and δ was chosen to make this action well defined, since

(δz) · F(z) = δ · (zF(z)) =
d
dz
(zF(z)) = zF ′(z) + F(z) = (1 + zδ) · F(z).

Any element P ∈ W can be uniquely written P = pr (z)δr +pr−1(z)δr−1+ · · ·+p0(z)
for polynomials pj(z) ∈ K[z], meaning

P · F(z) = pr (z)
dr

dzr
F(z) + pr−1(z)

dr−1

dzr−1 F(z) + · · · + p0(z)F(z).

D-finite equations over K are thus in bijection with the elements ofW.

Coefficient Properties

The coefficient sequence of a D-finite function satisfies a linear recurrence rela-
tion with polynomial coefficients, generalizing the C-finiteness of rational function
coefficients.

Definition 2.20 (P-recursive sequences) A sequence ( fn) is polynomially re-
cursive (P-recursive) if there exist polynomials c0(n), . . . , cr (n) ∈ K[n] such
that c0(n), cr (n) , 0 and

cr (n) fn+r + cr−1(n) fn+r−1 + · · · + c0(n) fn = 0 (2.8)

for all n ≥ 0. If the coefficient polynomials cj(n) have highest degree d, then we
call (2.8) a P-recursive relation of order r and degree d. As in the differential case
above, if ( fn) satisfies a non-homogeneous P-recursive relation of order r then it also
satisfies a homogeneous P-recursive relation of order r + 1.
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Definition 2.21 (shift algebra) The shift algebra S over K is the K-algebra
K〈n, S〉/〈Sn − (n + 1)S〉, consisting of K-linear combinations of monomials con-
taining powers of n and S, such that n and S don’t commute but satisfy Sn = (n+1)S.
We let the elements ofS act on the set of sequences overK by defining n·( fn) = (n fn)
and S · ( fn) = ( fn+1); the commutation rule for n and S was chosen to make this
action well defined, since

(Sn) · ( fn) = S · (n fn) = ((n + 1) fn+1) = ((n + 1)S) · ( fn).

Any element Q ∈ S can be uniquely written Q = qr (n)Sr +qr−1(n)Sr−1+ · · ·+q0(n)
for polynomials qj(n) ∈ K[n], meaning

Q · ( fn) = (qr (n) fn+r + qr−1(n) fn+r−1 + · · · + q0(n) fn) .

P-recursive relations over K are thus in bijection with the elements of S.
Both the Weyl algebra and shift algebra are examples of Ore algebras, and are

implemented in the Sage ore_algebra package [69].

Proposition 2.13 Let F(z) =
∑

n≥0 fnzn ∈ K[[z]].

1. If F(z) satisfies a D-finite equation of order r and degree d then ( fn) satisfies a
P-recursive relation of order at most r + d and degree at most r .

2. If ( fn) satisfies a P-recursive relation of order r and degree d then F(z) satisfies
a D-finite equation of order at most d and degree at most r + d.

Proof Since [zn]F(r)(z) = (n + r)(n + r − 1) · · · (n + 1) fn+r for r ∈ N, and

[zn]zkF(z) =

{
fn−k : 0 ≤ k ≤ n
0 : k > n

for k ∈ N, if F(z) satisfies a differential equation of the form (2.7) then its coef-
ficients satisfy a linear recurrence with polynomial coefficients, where derivatives
of F can increase the coefficient degree of the recurrence and both derivatives and
multiplications by z can increase the order of the recurrence.

Conversely, let ∂z = z d
dz be the operator that differentiates by z and thenmultiplies

the result by z, and for any k ∈ N let F≤k(z) be the polynomial F≤k(z) = f0 + f1z +
· · · + fk zk . Then ∑

n≥0
fn+k zn =

F(z) − F≤k(z)
zk

and repeated differentiation gives∑
n≥0

(
n j fn+k

)
zn = ∂ j

z

(
F(z) − F≤k(z)

zk

)
.

Thus, if ( fn) satisfies a linear recurrence of the form (2.8) then multiplying by zn and
summing over n gives a linear differential equation satisfied by F(z). Problem 2.11
asks you to prove the stated degree and order bounds. �
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Note that it is automatic to translate betweenD-finite equations satisfied by a series
and P-recursive relations satisfied by its coefficient sequence. This is implemented,
for example, in the Maple gfun package and the Sage ore_algebra package.

Example 2.19 (Central Binomial Coefficients Squared)

Let fn =
(2n
n

)2
and recall that the asymptotic growth of ( fn) implies the generating

function F(z) =
∑

n≥0 fnzn is not algebraic. Using Pascal’s identity, that
(a−1

b

)
+(a−1

b−1
)
=

(a
b

)
for all positive integers a and b, light algebraic manipulation shows

(n + 1)2 fn+1 − 4(2n + 1)2 fn = 0

for all n ≥ 0. Thus, F(z) is D-finite. Following the proof of Proposition 2.13 translates
this to the differential equation

z (1 − 16z)
d2

dz2 F(z) + (1 − 32z)
d
dz

F(z) − 4F(z) = 0.

The generating function F(z) can be written in terms of an elliptic integral by solving
this differential equation, providing a second path to proving transcendence.

Recall from Section 2.2 that the solutions of a linear recurrence of order r with
constant coefficients form a K-vector of dimension r (adding two solutions or multi-
plying by a constant yields another solution). Because (2.8) is still a linear recurrence,
its solutions still form a K-vector space, but when the leading coefficient cr (n) van-
ishes at non-negative integers the dimension of this vector space may be greater than
the order r of the recurrence. To account for this, let B be the set of non-negative
integer solutions to cr (n) = 0 and

I = {0, . . . , r − 1} ∪ {b + r : b ∈ B}.

If ( fn) is a solution of the linear recurrence (2.8) then the values of fn for n ∈ I
uniquely determine ( fn). Furthermore, if N = max I and f0, . . . , fN satisfy (2.8)
for n ≤ N − r then this finite list always extends to a unique infinite sequence
satisfying (2.8). Thus, the finite sequences which satisfy (2.8) for n ≤ N − r form
a vector space ΛN whose dimension can be computed by linear algebra and equals
the dimension of the vector space of all solutions to (2.8).

Definition 2.22 (generalized initial conditions) The values of fn when n ∈ I are
generalized initial conditions for a sequence ( fn) satisfying (2.8).

Remark 2.3 By Proposition 7.7 in Chapter 7, the elements of B are at most one larger
than the maximum absolute value of the coefficients of cr (n).

Example 2.20 (A Large Solution Space for a Linear Recurrence)
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Consider the linear recurrence relation n(n−2) fn+2− fn+1−(n−1) fn = 0 overK = Q.
Here the order r = 2 and B = {0, 2} so I = {0, 1} ∪ {0 + 2, 2 + 2} = {0, 1, 2, 4}
with maximum element N = 4. In order for ( f0, . . . , f4) to be the start of a sequence
satisfying this recurrence it must be that

− f1 + f0 = 0 (n = 0)
− f3 − f2 = 0 (n = 1)
− f3 − f2 = 0 (n = 2 = N − r)

meaning

©«
1 −1 0 0 0
0 0 −1 −1 0
0 0 −1 −1 0

ª®¬︸              ︷︷              ︸
M

©«
f0
f1
f2
f3
f4

ª®®®®®¬
= 0.

Since M has rank 2, the rank-nullity theorem implies the vector space of solutions to
this matrix equation has dimension 3. A sequence ( fn) satisfying this recurrence is
uniquely determined by f0, f2, and f4, and any assignment of values to these terms
can be extended to a full sequence by setting f1 = f0 and

fn+2 =
fn+1 + (n − 1) fn

n(n − 2)

for all n < {0, 2}. Thus, the solution space of this recurrence forms a Q-vector
space of dimension 3 (even though the recurrence has order 2). Any assignment
f0 = f1 = a, f2 = b, and f4 = c for (a, b, c) ∈ Q forms a generalized initial condition.

Bostan et al. [14, Ch. 15] study the complexity of generating terms in P-recursive
sequences.

Examples of D-finite Functions

Many common functions are easily seen to be D-finite, including exponentials, loga-
rithms, (arc-)sine and (arc-)cosine functions, generalized hypergeometric functions
(including common special functions like the Bessel and Airy functions), rational
period integrals, and more. Furthermore, the class of D-finite functions contains all
algebraic functions.

Proposition 2.14 If f (z) is an algebraic function of degree d over a field K of
characteristic zero then f (z) is D-finite over K, and is annihilated by a D-finite
equation of order at most d.

Proposition 2.14 has been rediscovered by several authors going back to the 19th
century, including Abel, Tannery, Cockle, Harley, and Comtet. Chudnovsky and
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Chudnovsky [25] and Bostan et al. [15] have studied this result from a complexity
viewpoint, giving explicit bounds on the orders and coefficient degrees of annihilating
D-finite equations associated to algebraic functions. In particular, for efficiency
reasons it can be desirable to take an annihilating D-finite equation of non-minimal
order so as to greatly reduce the degrees of the polynomial coefficients involved.

Proof Let P(z, y) be theminimal polynomial of f andwrite Pz(z, y) for (∂P/∂z)(z, y)
and Py(z, y) for (∂P/∂y)(z, y). Differentiating the equation 0 = P(z, f (z)) with re-
spect to z implies

0 = Pz(z, f (z)) + f ′(z)Py(z, f (z)).

Because K has characteristic zero and Py is a polynomial in y of degree smaller
than P, which is the minimal polynomial of f (z), it follows that Py(z, f (z)) , 0 and

f ′(z) = −
Pz(z, f (z))
Py(z, f (z))

.

If R = K(z) denotes the field of rational functions over K, this implies f ′ lies
in the algebraic field extension R( f ) of degree d over R. By induction the d + 1
elements f , f ′, . . . , f (d) all lie inR( f ), meaning they are linearly dependent overR.�

Conversely, it is an interesting problem to prove or disprove algebraicity of a
D-finite function specified by a known annihilating D-finite equation and initial
conditions. Singer [105] gives an algorithm for deciding when all solutions of a
D-finite equation are algebraic, which can be modified to solve this problem, but
a need for factorization in non-commutative rings leads to an impractically large
runtime. An alternative approach, arising in the context of lattice path enumeration,
can be found in Bostan et al. [13].

The class of D-finite functions is also closed under many natural operations.

Proposition 2.15 Let F(z) =
∑

n≥0 fnzn and G(z) =
∑

n≥0 gnzn satisfy D-finite
equations of orders r and s, and let H(z) be differentiable. Then, when defined,

(1) The product F(z)G(z) satisfies a D-finite equation of order at most rs;
(2) The sum F(z) + G(z) satisfies a D-finite equation of order at most r + s;
(3) dF

dz (z) and
∫

F(z)dz are D-finite;
(4) If G(z) is algebraic then F(G(z)) is D-finite;
(5) The Hadamard product (F � G)(z) =

∑
n≥0( fngn)zn is D-finite;

(6) H and 1/H are both D-finite if and only if H ′/H is algebraic.

Proof Item (1) follows from the fact that the products of derivatives F(i)(z)G(j)(z)
span the K(z)-vector space of the derivatives of F(z)G(z), while (2) follows from
linearity of the derivative. Item (3) follows directly from the definition of D-finiteness
and Item (4) follows from the chain rule and basic field theory [110, Thm. 6.4.10].
Item (5) follows from P-recursiveness of the coefficient sequences and an argument
analogous to Item (1). Item (6) was given by Harris and Sibuya [64]. �

These closure properties are effective: there are algorithms which take annihilat-
ing D-finite equations for F and G and return annihilating equations for their sum,
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product, composition, and Hadamard product, among other operations. In compar-
ison to Item (4), Singer [106] showed that if G(z) is algebraic of genus at least 1
then G(F(z)) is D-finite if and only if F(z) is also algebraic. The Pólya-Carlson
theorem [92] implies that a D-finite series with integer coefficients and radius of
convergence 1 is in fact rational.

P-recursive sequences, and thus D-finite functions, are central to enumerative
combinatorics. In addition to combinatorial classes with rational or algebraic gen-
erating functions, transcendental D-finite functions appear in the study of most
major combinatorial objects including permutations9, graphs10, tableau [56], and,
as discussed in detail here, lattice path enumeration. Stanley [110] and Flajolet
and Sedgewick [50, Sect. VII.9] contain a large number of additional examples.
Salvy [102] gives an excellent survey of D-finite functions from a computer algebra
perspective.

Automated Identity Proving and Creative Telescoping

Identities involving P-recursive sequences can be proven by verifying that they hold
for a sufficient (finite) number of terms: to prove a P-recursive sequence (cn) is
identically zero it is sufficient to show that ck = 0 when k lies in a finite set of
generalized initial conditions. To prove that two P-recursive sequences (an) and (bn)
are identical, one can compute a linear recurrence satisfied by cn = an − bn and
verify that cn = 0 for a sufficient number of terms. In fact, given linear recurrence
relations for (an) and (bn) one can automatically determine a bound N such that
the sequences (an) and (bn) are equal when their terms agree for all 0 ≤ n ≤ N .
Similarly, to prove two D-finite functions are equal it is sufficient to prove that a finite
number of their derivatives (or power series coefficients) are equal at the origin.

Example 2.21 (Sums of Squares)

Suppose we want to prove the identity
∑n

k=0 k2 =
n(n+1)(2n+1)

6 . If an =
∑n

k=0 k2 then

an+1 − an = (n + 1)2 and an+2 − an+1 = (n + 2)2,

so subtracting (n+2)2 times the first equation from (n+1)2 times the second equation
gives a second order linear homogeneous recurrence

9 Many well known families, such as Baxter permutations and permutations with bounded cycle
length, have D-finite generating functions. In the 1990s, Noonan and Zeilberger [86] conjectured
that the generating function of permutations avoiding any fixed set of patterns was D-finite (see that
paper for the definition of pattern avoidance). This was recently shown to be false by Garrabrant
and Pak [54], who proved non-D-finiteness for the generating function of permutations avoiding
some set of patterns contained in S80. There is some evidence [28] that the generating function of
1324-avoiding permutations may be non-D-finite, which is a large open problem in the area.
10D-finite generating functions appear in the enumeration of rooted planar maps of fixed genus [19],
k-regular graphs [56] for fixed k, and similar problems.
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(n + 1)2an+2 − (2n2 + 6n + 5)an+1 + (n + 2)2an = 0 (2.9)

satisfied by (an). Direct substitution shows that the sequence bn = n(n+1)(2n+1)/6
satisfies the same recurrence, and it agrees with an for its first two terms, so the
two sequences are equal for all n. In general (bn) will also be specified by a linear
recurrence, and one cannot simply substitute. For example, here bn+1/bn is a rational
function so bn satisfies the first order linear recurrence

n(n + 1)(2n + 1)bn+1 − (n + 1)(n + 2)(2n + 3)bn = 0. (2.10)

This implies the sequence cn = an−bn satisfies a recurrence of order atmost 2+1 = 3,
meaning the four sequence shifts cn+3, cn+2, cn+1, and cn lie in a Q(n)−vector space
of dimension 3 and thus have a linear dependency. Writing out the cj sequence
in terms of aj and bj , then using (2.9) and (2.10) to eliminate all terms except
for an+1, an, and bn gives a system of three homogeneous linear equations in four
variables. Computing a non-zero solution of this system shows that cn satisfies the
same second order recurrence,

(n + 1)2cn+2 − (2n2 + 6n + 5)cn+1 + (n + 2)2cn = 0,

as an. Note that this recurrence is satisfied when cn is the difference of any two
solutions11 of (2.9) and (2.10): working on the level of recurrences allows for com-
putations to be performed in Q(n). Since our specified sequences an and bn satisfy
c0 = a0 − b0 = 0 and c1 = a1 − b1 = 0 then an = bn for all n.

A powerful technique for proving identities is the creative telescoping frame-
work, introduced by Zeilberger [128, 129], along with Wilf [126], in the 1980s and
1990s based on techniques of Fasenmyer [43] and Gosper [57]. Creative telescop-
ing methods can (among other things) compute integrals of D-finite functions and
sums of P-recursive sequences with free parameters by deducing differential equa-
tions or recurrence relations they satisfy. Proposed identities can then be verified,
or discovered, using the arguments discussed above. The name ‘creative telescop-
ing,’ apparently coined by van der Poorten [117] in his account of Apéry’s proof of
the irrationality of ζ(3), comes from the fact that these methods can be considered
a (vast) generalization of the elementary technique by which certain sums can be
manipulated to have summands which telescope.

Example 2.22 (A Parametrized Integral)

Consider the parametrized integral

11 It can be shown that the general solution to (2.9) is A + B bn for constants A and B while the
general solution to (2.10) isC bn for a constantC, and indeed A+B bn −C bn = A+ (B−C) bn

is always a solution of (2.9).



64 2 Generating Functions and Analytic Combinatorics

G(t) =
1

2πi

∫
γ

1
x − x2 − t

dx,

where γ is the positively oriented circle {|x | = 1/2} and |t | ≤ 1/5, so x − x2 − t is
never zero for x on γ. The methods of creative telescoping produce the identity

(4t − 1)
d
dt

(
1

x − x2 − t

)
+

2
x − x2 − t

=
d
dx

(
1 − 2x

x − x2 − t

)
,

which can easily be verified by differentiation. Integrating this equation with respect
to x gives

(4t − 1)
∫
γ

d
dt

(
1

x − x2 − t

)
dx + 2

∫
γ

1
x − x2 − t

dx =
∫
γ

d
dx

(
1 − 2x

x2 − x − t

)
dx = 0,

since γ is a closed curve on which x2 − x − t is not zero. A minor argument
shows that the derivative d

dt can be moved outside of the integral with respect to x,
so G(t) is D-finite and satisfies (4t − 1)G′(t) + 2G(t) = 0 with initial condition
G(0) = 1

2πi

∫
γ

dx
x−x2 = 1. In fact, solving this separable differential equation shows

G(t) = (1 − 4t)−1/2 is the generating function of the central binomial coefficients.
This computation is related to the multivariate diagonals discussed in Chapter 3.

Over the last three decades there has been a tremendous amount of research in
the computer algebra community on creative telescoping, extending the framework
to new classes of problems and improving efficiency through several ‘generations’
of algorithms. This work has been some of the most fruitful in modern computer
algebra, leading to practical implementations which find application in a vast number
of mathematical and scientific fields. A listing of such results is outside the scope of
this text, but we briefly return to creative telescoping in Chapter 3 as it allows one
to obtain an annihilating D-finite equation satisfied by the diagonal of a multivariate
rational function. Detailed accounts of the methods and applications of creative
telescoping can be found in recent surveys [91, 73, 27, 22].

Asymptotics of P-Recursive Sequences

Assume now that K = A is the field of algebraic numbers. A classic theorem of
Fabry [42] states that any D-finite equation over the field of algebraic numbers
admits a basis of formal series solutions of the form

zα exp
(
P

(
z−1/q

)) d∑
j=0

(
fj

(
z1/q

)
logj z

)
,
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where the fj are power series, P is a polynomial, q ∈ N>0, α is an algebraic
number, and log z is a formal term algebraically independent of z with formal
derivative d

dz log z = 1/z. Analogously, a P-recursive relation has a basis of formal
series solutions of the form

ρnnαΓ(n)β exp
(
P

(
n1/q

)) d∑
j=0

(
fj

(
n−1/q

)
logj n

)
,

where the fj are power series, P is a polynomial, q ∈ N>0, ρ and α are algebraic
numbers, and β ∈ Q. Initial terms of these formal series solutions can be computed
using the so-called Birkhoff-Trjitzinsky method [11, 12]. A nice summary of the
Birkhoff-Trjitzinsky method can be found inWimp and Zeilberger [127], including a
discussion on the difference between formal series solutions and those representing
asymptotically meaningful series; an implementation of the Birkhoff-Trjitzinsky
method (used for our examples) is contained in the Sage ore_algebra package. We do
not delve into the complicated topic of formal versus asymptotic series because, as
we will soon see, when dealing with combinatorial generating functions which are
analytic at the origin one can always work with D-finite equations and P-recursions
whose formal solutions represent meaningful asymptotic expansions.

Example 2.23 (D-Finite and P-Recursive Bases of Solutions)

The number an of lattice walks beginning at the origin, staying in N2, and taking n
steps in S = {(±1, 0), (0,±1)} satisfies the P-recursion

(n + 4)(n + 3)an+2 − 4(2n + 5)an+1 − 16(n + 1)(n + 2)an = 0.

The solutions of this P-recurrence form a two-dimensional C-vector space, and the
generalized_series_solutions command of the Sage ore_algebra package determines
a basis for this vector space consisting of two elements whose expansions begin

4n n−1
(
1 −

3
2n
+ · · ·

)
and (−4)n n−3

(
1 −

9
2n
+ · · ·

)
.

The generating function A(z) of this sequence satisfies the D-finite equation

z2(4z − 1)(4z + 1)A′′′(z) + 2z(4z + 1)(16z − 3)A′′(t)

+ 2(112z2 + 14z − 3)A′(t) + 4(16z + 3)A(t) = 0

whose solutions form a three-dimensional C(z) vector space. Applying the general-
ized_series_solutions command now gives three series expansions

1 + 2z + 6z2 + 18z3 + 60z4 + · · ·

z−1(1 + 2z + 4z2 + 12z3 + 36z4 + · · · )

z−2(z + 2z2 + 4z3 + 12z4 + · · · ) log(z) − (1/4 + 3z/2 + 2z2 + · · · )
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corresponding to the elements of a basis for the solution vector space.

Our asymptotic results follow from a careful study of how a D-finite equation
determines the singularities of its D-finite function solutions.

Definition 2.23 (singularities of D-finite equations) A point ζ ∈ C is an ordinary
point of the D-finite equation (2.7) if there exist r linearly-independent solutions
of (2.7) which are analytic at z = ζ . A point which is not ordinary is a singularity of
the D-finite equation (2.7). The exceptional set of (2.7) is Ξ = {z ∈ C : ar (z) = 0}.

A classic argument [124, Thm. 2.2] dating back to Cauchy implies any singularity
of (2.7) must be a zero of the leading coefficient ar (z) and thus lie in the finite
algebraic set Ξ, giving the following.

Lemma 2.3 If ζ < Ξ then any solution of (2.7)which is analytic in a slit disk centred
at ζ is in fact analytic at ζ .

To further classify the (potential) singularities of (2.7), we rewrite the equation as

dr

dzr
F(z) + br−1(z)

dr−1

dzr−1 F(z) + · · · + b0(z)F(z) = 0, (2.11)

where bj(z) = aj(z)/ar (z).

Definition 2.24 (regular singular points and indicial polynomials) For any ra-
tional function R(z), let ωζ (R) be the order of the pole of R at z = ζ , equal to 0
if R is analytic at ζ . The point ζ ∈ Ξ is a regular singular point of (2.11) and,
equivalently, (2.7) if

ωζ (br−1) ≤ 1, ωζ (br−2) ≤ 2, . . . , ωζ (b0) ≤ r .

A linear differential equation with only regular singular points is called Fuchsian.
The indicial polynomial of (2.7) at a regular singular point ζ is the polynomial

I(θ) = (θ)r + δ1 (θ)r−1 + · · · + δr,

where (θ)j = θ(θ − 1) · · · (θ − j + 1) and δj = limz→ζ (z − ζ)j br−j(z).

In the 1860s, Fuchs [52] published a study of linear differential equations, charac-
terizing those which do not admit solutions with essential singularities. Soon after,
Frobenius [51] gave a simplified method for computing a basis of solutions at a
regular singular point, which consists of functions locally analytic in a slit disk12.
The following result can be found in Wasow [124, Ch. 2].

12 In fact, much of this theory seems to be contained in an unpublished manuscript of Riemman
from several decades earlier. A historical treatment of early methods in differential equations is
given by Gray [60].
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Proposition 2.16 Let ζ be a regular singular point of the D-finite equation (2.7).
Then in a slit disk around ζ , equation (2.7) admits a C-linear basis of analytic
solutions of the form

(1 − z/ζ)γ
m∑
j=0

(
fj (1 − z/ζ) logj(1 − z/ζ)

)
, (2.12)

where γ is a root of the indicial polynomial I(θ) and the fj are analytic at the origin.
If I(θ) has distinct roots, no two of which differ by an integer, then there are no
logarithmic terms and a linear basis of solutions is given by functions of the form
(1 − z/ζ)γ f (1 − z/ζ) where f is analytic at the origin.

Given expansion (2.12) valid in a slit disk, we write F(z) ∼ C(1− z/ζ)α logm(1−
z/ζ) if the ratio C(1 − z/ζ)α logm(1 − z/ζ)/F(z) → 1 whenever z → ζ along any
path in the slit disk. As with our work on Puiseux expansions, we can transfer a series
expansion of the form (2.12) at the dominant singularity of a generating function to
asymptotics of its coefficients. The following result is originally due to Jungen [67];
a modern proof can be found in Flajolet and Odlyzko [48].

Proposition 2.17 Suppose F(z) =
∑

n≥0 fnzn is analytic in some open disk around
the origin except for a single dominant singularity ζ ∈ C and points in the ray
Rζ = {tζ : t ≥ 1}. If F(z) has a convergent expansion of the form (2.12) in a disk
centred at ζ with Rζ removed and F(z) ∼ C(1 − z/ζ)α logm(1 − z/ζ) with α < N

then fn ∼ Cζ−n n−α−1

Γ(−α) logm n. If there are a finite number of dominant singularities,
each satisfying these hypotheses, then asymptotics of fn are determined by adding
the asymptotic contributions given by each.

Remark 2.4 When α ∈ N the identity

d
dz
(1 − z)α log(1 − z)r = −α(1 − z)α−1 log(1 − z)r − r(1 − z)α−1 log(1 − z)r−1

can be used to recursively determine the coefficients of (1 − z)α log(1 − z)r . Any
term in (2.12) with α ∈ N and r = 0 is a polynomial and may be subtracted from
F(z) without changing asymptotic behaviour.

Putting Propositions 2.16 and 2.17 together gives the following.

Proposition 2.18 Assume that the coefficients bj(z) of (2.11) are analytic in a disk
|z | < ρ except at a unique pole ζ ∈ Ξ with 0 < |ζ | < ρ. Suppose that ζ is a regular
singular point of (2.11) and that F(z) is a solution to (2.11) which is analytic at the
origin. If none of the solutions α1, . . . , αr to the indicial equation I(θ) = 0 at ζ differ
by an integer then there exist c1, . . . , cr ∈ C such that for any τ with |ζ | < τ < ρ,

[zn]F(z) =
r∑
j=1

cj∆j(n) +O(τ−n), (2.13)
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where ∆j(n) = 0 when αj ∈ N and ∆j(n) is determined by an effective asymptotic
series whose terms can be calculated to any desired order when αj < N. If αj < N
then the leading term of ∆j(n) is

∆j(n) =
n−αj−1

Γ(−αj)
ζ−n

(
1 +O

(
1
n

))
.

When the roots of I(θ) differ by an integer (including the case of multiple roots) then
dominant asymptotics of [zn]F(z) are given by aC-linear combination of terms of the
form ζ−nn−σj (log n)` , where σj is algebraic and ` is a non-negative integer. When
there are a finite number of dominant singularities, each satisfying these hypotheses,
then asymptotics are determined by adding the asymptotic contributions of each.

The growth of D-finite series coefficients is less restricted than the algebraic
case: logarithmic powers may be present and the factor n−1−αj can be irrational or a
negative integer power. Further discussion of Proposition 2.18, its applications, and
generalizations to irregular singularities can be found in Flajolet and Sedgewick [50,
Sect. VII. 9 and VIII. 7].

Example 2.24 (Central Binomial Coefficients Squared)

As discussed above, the transcendental function F(z) =
∑

n≥0
(2n
n

)2
zn satisfies the

D-finite equation z (1 − 16z) F ′′(z)+ (1− 32z)F ′(z) − 4F(z) = 0. Since F(z) doesn’t
decay super-exponentially (it grows) it must have a singularity, and because it is
analytic at the origin this singularity is the regular singular point z = 1/16. We can
compute convergent expansions

A(z) = 1 +
1
4
(1 − 16z) +

9
64
(1 − 16z)2 + · · ·

B(z) =

(
1 +

1
4
(1 − 16z) +

9
64
(1 − 16z)2 + · · ·

)
log(1 − 16z) +

1
2
(1 − 16z) +

21
64
(1 − 16z)2 + · · ·

in a slit disk at z = 1/16 of functions A(z) and B(z) which form a basis of solutions
for this D-finite equation. The logarithmic factor in B is a reflection of the fact that
the indicial polynomial I(θ) = θ2 at z = 1/16 has a double root. Since A and B form
a basis of solutions, we can write F(z) = κ1 A(z)+κ2B(z) for κ1, κ2 ∈ C. Furthermore,
since A is analytic at z = 1/16 while F and B have singularities there, it must be the
case that κ2 , 0 and Proposition 2.17 implies(

2n
n

)2
= κ2

16n

n

(
1 +O

(
1
n

))
.

Finding asymptotics of the sequence
(2n
n

)
with algebraic generating function G(z) =

(1−4z)−1/2 and squaring the result shows κ2 = 1/π. We discuss the general problem
of determining such coefficients in the next subsection.
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At an irregular singular point a solution of (2.7) may have an essential singularity,
making arguments more difficult and leading to more general asymptotic behaviour.
Fortunately, a set of powerful results collectively imply that any D-finite power series
with integer coefficients that is analytic at the origin has only regular singularities,
and the corresponding indicial polynomial has only rational roots. In fact, the result
applies to a larger class of power series.

Definition 2.25 (G-functions) A power series F(z) =
∑

n≥0 fnzn ∈ Q[[z]] is called
a G-function13 if F(z) is D-finite and there exists a constant C > 0 such that for all n
both | fn | and the least common denominator of f0, . . . , fn are bounded by Cn.

Proposition 2.19 (André-Chudnovsky-KatzTheorem) If F(z) is aG-function then
a minimal order annihilating D-finite equation for F is Fuchsian, and its indicial
polynomial I(θ) has only rational roots.

Chudnovsky and Chudnovsky [24, Thm. III] showed that if F(z) is a G-function
then a minimal order annihilating D-finite equation L is globally nilpotent, meaning
that a certain linear operator derived from L is nilpotent modulo p for all but a finite
number of primes p. A previous result of Katz [68] then restricts the singular be-
haviour of L, giving Proposition 2.19. André [2, Section VI] extended and clarified
these arguments. Note that Proposition 2.19 gives information about all solutions of
a D-finite equation from properties of a single solutions, a powerful result. Translat-
ing back to coefficient asymptotics gives the following, first used in combinatorial
contexts by Garoufalidis [53] and Bostan et al. [16].

Corollary 2.2 Suppose F(z) is a G-function, for instance a D-finite function with
integer coefficients which is analytic at the origin. Then, as n→∞, the power series
coefficients ( fn) of F(z) have an asymptotic expansion given by a sum of terms of the
form C nα ζn (log n)` where C ∈ C, α ∈ Q, ` ∈ N, and ζ is algebraic.

Just as the asymptotic statement in Corollary 2.1 is useful for proving transcen-
dence of functions, Proposition 2.18 and Corollary 2.2 are powerful tools for proving
non-D-finiteness. Another useful technique for proving non-D-finiteness is to show
that a function has an infinite number of singularities.

Example 2.25 (Number of Alternating Permutations is Not P-Recursive)

In Section 2.1.1 we studied the function tan(z) =
∑

n≥0
an

n! zn, where an is the
number of alternating permutations of n. Because tan(z) has a singularity at every
z = π/2 + πk with k ∈ Z, the tangent function is not D-finite and an/n! is not
P-recursive. Since the product of P-recursive sequences is P-recursive by Item (5) of
Proposition 2.15 above, and 1/n! is P-recursive, this implies an is not P-recursive.

Example 2.26 (Prime Sequence is Non-D-Finite)

13G-functionswere introduced by Siegel [104] in his studies on number theory and elliptic integrals.
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Flajolet et al. [47] prove non-D-finiteness of several generating functions by examin-
ing asymptotics of their power series coefficients, including logarithms, non-integer
powers, and the sequence of primes. For instance, if pn denotes the nth prime number
then the prime number theorem allows one to deduce the asymptotic estimate

pn = n log n + n log log n +O(n),

and the existence of the log-log term proves that the generating function P(z) =∑
n≥0 pnzn is non-D-finite.

2.4.1 An Open Connection Problem

The interplay between a G-function F(z) and its P-recursive coefficient sequence ( fn)
comes into sharp focus when trying to determine asymptotics. First, studying D-
finite equations allowed for the asymptotic characterizations in Proposition 2.18 and
Corollary 2.2. On the other hand, the Birkhoff-Trjitzinsky method applied to the
P-recursion for fn gives a basis of solutions Ψ1(n), . . . ,Ψr (n) for the recurrence
whose asymptotic expansions can be computed. To represent fn in this basis it is
most convenient to turn back to the D-finite equation for F(z).

Definition 2.26 (connection coefficients) The constants λ1, . . . , λr ∈ C such that
fn = λ1Ψ1(n) + · · · + λrΨr (n) are called connection coefficients of fn with respect
to the basis Ψ1, . . . ,Ψr . Similarly, if Λ1(z), . . . ,Λs(z) form a basis of solutions for
the D-finite equation satisfied by F(z) then the constants λ1, . . . , λs ∈ C such that
F(z) = λ1Λ1(z)+· · ·+λsΛs(n) are called connection coefficients of F(z)with respect
to the basis Λ1, . . . ,Λs .

An exact characterization of connection coefficients for G-functions is currently
unknown, although Fischler and Rivoal [45, Thms. 1 and 2] show that such any
such constant is the evaluation g(1) of a G-function g ∈ Q(i)[[z]] whose radius of
convergence can be made arbitrarily large.

Most importantly, to determine even the scale of dominant asymptotics one must
figure out which connection coefficients are nonzero. At the generating function
level this is a connection problem analogous to the case of algebraic functions:
around each element of Ξ local convergent expansions can be computed for a basis
of solutions, and one needs to express F(z) as a C-linear combination of these basis
elements. If the representation of F(z) in such a basis contains an element whose
local series expansion at ζ ∈ Ξ contains a non-power-series term, and there is no
cancellation with other basis elements, then z = ζ is a singularity of F.

Numeric approximations of connection coefficients can be rigorously computed
to any desired accuracy, allowing one to certify a non-zero connection coefficient and
providing heuristic evidence when connection coefficients are zero. Naive techniques
for computing such continuations were known in principle perhaps as far back as
Frobenius. Efficient algorithms for continuation of D-finite functions, including to a
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regular singular point, were given by van der Hoeven [115] and outlined in previous
work of Chudnovsky and Chudnovsky [26]; the key idea is to use fast evaluation
of a D-finite power series inside its radius of convergence14. Additional aspects of
this problem have been studied by Mezzarobba [80], who also developed a Sage
package [81] which can compute hundreds (or thousands) of rigorously certified
digits of connection coefficients in seconds when run on a modern computer.

Example 2.27 (A Numeric Connection Solution)

Consider a solution F(z) of the Fuchsian differential equation

5z2(2z − 1)(z − 3)F(4)(z) + 2z(59z2 − 139z + 36)F(3)(z)

+ 6(61z2 − 80z + 6)F ′′(z) + 12(25z − 11)F ′(z) + 36F(z) = 0,
(2.14)

whose coefficient sequence ( fn) satisfies the linear recurrence

3(n + 3)(5n + 4) fn+2 − (n + 2)(35n + 33) fn+1 + (10n2 + 28n + 18) fn = 0.

This recurrence has a basis of solutions consisting of two series

Ψ1(n) =
2n

n

(
1 − n−1 +O

(
n−2

))
and Ψ2(n) = 3−n

(
1 +O

(
n−2

))
,

which can be determined automatically to any order by the Birkhoff-Trjitzinsky
method. This means there exists constants λ1 and λ2, depending only on the initial
conditions f0 and f1, such that

fn = λ1Ψ1(n) + λ2Ψ2(n) ∼

{
λ1

2n
n : λ1 , 0

λ2 3−n : λ1 = 0
.

To say even if fn increases or decreases, it is necessary to decide whether λ1 is
zero. To this end, we examine a basis of solutionsΦ0(z), . . . ,Φ3(z) to the differential
equation (2.14) defined by their expansions in a neighbourhood of the origin. We
can compute a basis of solutions

Φ0(z) = 1 − z2/2 + · · · Φ1(z) = z + 11z2/6 + · · ·

Φ2(z) = z−1 + · · · Φ3(z) = z1/5
(
z + 11z2/6 + · · ·

)
,

and matching up initial series terms with F(z) = f0 + f1z + · · · implies F(z) =
f0Φ0(z)+ f1Φ1(z). Note that although we do not know the basis elements explicitly,
we can represent F in the basis using only the first two series terms of each element.

The leading coefficient of (2.14) vanishes at z = 1/2 and z = 3, correspond-
ing to the potential asymptotic behaviour of fn. For example, there is a basis of

14 OnlyO(n) terms of a D-finite power series are needed to compute n digits of an evaluation inside
its radius of convergence, with good bounds on the precise number of necessary terms [83, 82].
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solutions Γ0(z), . . . , Γ3(z) to (2.14) whose expansions at z = 1/2 are

Γ0(z) = log (z − 1/2) (1 + 2(z − 1/2) + · · · )

Γ1(z) = 1 + (8/25)(1 − z/2)3 + · · ·

Γ2(z) = (z − 1/2) + (8/25)(1 − z/2)3 + · · ·

Γ3(z) = (z − 1/2)2 − 2(1 − z/2)3 + · · · ,

where Γ0(z) contains a logarithmic singularity at z = 1/2 and the other three functions
are analytic. To determine the singular behaviour of F(z) at z = 1/2 we need to
express F in terms of the Γj basis. Since we have expressed F in the Φj basis by
examining its behaviour at the origin, it is sufficient to find the change of basis
matrix M such that if a0, . . . , a3, b0, . . . , b3 ∈ C and

a0 Ψ0(z) + · · · a3 Ψ3(z) = b0 Γ0(z) + · · · b3 Γ3(z)

then (
b0 b1 b2 b3

)T
= M

(
a0 a1 a2 a3

)T
.

The analytic_ore_algebra Sage package of Mezzarobba [81] uses numeric analytic
continuation to compute a rigorous numeric approximation

M ≈
©«

0.50 . . . −1.50 . . . 0.0 . . . −1.37 . . .
2.14 . . . − i(1.57 . . .) −2.83 . . . + i(4.71 . . .) 2.0 . . . −2.73 . . . + i(4.33 . . .)
0.02 . . . − i(3.14 . . .) 1.35 . . . − i(9.42 . . .) −4.0 . . . 1.05 . . . − i(8.66 . . .)
1.67 . . . − i(6.28 . . .) −4.44 + i(18.84 . . .) 8.0 . . . −4.408 + i(17.32 . . .)

ª®®®¬ ,
where the approximation is computed to 2500 certified digits in around 10 seconds
on a modern laptop. The entries of(

b0 b1 b2 b3
)
= M

(
f0 f1 0 0

)T
then determine F(z) in terms of the Γj basis. In particular, the coefficient b0 of Γ0
is (0.50 . . .) f0 + (−1.50 . . .) f1, where the dots hide 2498 zeroes, strongly suggesting
b0 = (1/2) f0 − (3/2) f1. Since Γ(z) has a singular expansion beginning with log(z −
1/2) at z = 1/2, and Γ1, Γ2, and Γ3 are analytic at z = 1/2, if true this would imply

fn =
(
3 f1 − f0

2

)
2n

(
n−1 + · · ·

)
+O (3−n) .

Thus, when 3 f1− f0 is far from zero it seems reasonable that the coefficient sequence
will grow exponentially and this will be easily detected. When 3 f1 − f0 equals zero
it seems that F(z) does not have a singularity at z = 1/2, and dominant asymptotics
are determined by repeating the process with a basis of solutions whose expansions
near z = 3 are known. When 3 f1 − f0 is very close but not equal to zero it seems that
the sequence will grow exponentially, but one could be fooled into thinking this was
not the case. In general the connection coefficients can be transcendental, making
such an analysis difficult.
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For this simple example it can be verified directly that

Ψ1(n) =
2n

n

∑
k≥0

(−1)k

nk
=

2n

n + 1
and Ψ2(n) = 3−n

form a basis of solutions for the recurrence under consideration, so that

fn =
(
3 f1 − f0

2

)
2n

n + 1
+

(
3 f0 − 3 f1

2

)
3−n.

Example 2.28 (A Numeric Connection Solution for Binomial Coefficients)

Repeating this process on the differential equation

z (1 − 16z)
d2

dz2 F(z) + (1 − 32z)
d
dz

F(z) − 4F(z) = 0

with initial conditions F(0) = 1 and F ′(0) = 4, which encodes the generating
function of the central binomial coefficients squared, gives(

2n
n

)2
= (.3183098861 . . . )

16n

n

(
1 +O

(
1
n

))
.

The numerical approximation corresponds to the connection coefficient 1/π.

Example 2.29 (Simple Lattice Walks in N2)

Problem 4.4 of Chapter 4 asks you to prove that the generating function A(z) counting
the number an of lattice walks beginning at the origin, staying in N2, and taking n
steps in S = {(±1, 0), (0,±1)} satisfies the D-finite equation

z2(4z − 1)(4z + 1)A′′′(z) + 2z(4z + 1)(16z − 3)A′′(t)

+ 2(112z2 + 14z − 3)A′(t) + 4(16z + 3)A(t) = 0,
(2.15)

so that (an) satisfies the P-recurrence

(n + 4)(n + 3)an+2 − 4(2n + 5)an+1 − 16(n + 1)(2 + n)an = 0.

This recurrence has a basis of solutions with expansions

Ψ1(n) = 4n n−1
(
1 −

3
2n
+ · · ·

)
and Ψ2(n) = (−4)n n−3

(
1 −

9
2n
+ · · ·

)
,
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corresponding to the singular points z = ±1/4 of the D-finite equation (2.15).
Performing the same numeric analytic continuation argument gives

an = (1.273 . . . )Ψ1(n) + (5.092 . . . )Ψ2(n) ∼ (1.273 . . . )4nn−1.

In Section 6.1.1 of Chapter 6 we use the methods of analytic combinatorics in
several variables to provide an asymptotic decomposition of an which determines
these connection coefficients exactly. In particular, we will see that an ∼ (4/π)4nn−1.

The determination of connection coefficients is a major open problem in enumer-
ative combinatorics. We discuss methods of attacking this connection problem using
analytic combinatorics in several variables in the following chapters.

Open Problem 2.4 (Decidability ofD-finiteAsymptotics)Given aG-functionF(z),
specified by an annihilating Fuchsian D-finite equation L and enough initial con-
ditions to distinguish F(z) as a solution, is it decidable to determine dominant
asymptotics of F(z)? In particular, is it decidable to determine which singularities
of L are singularities of F(z) and find the corresponding connection coefficients?

2.5 D-Algebraic Power Series

We end with a brief discussion of functions satisfying certain non-linear differential
equations, mainly to highlight how delicate the relevant decidability issues are. As
we do not consider such functions later in the text, we do not go into great detail; a
more robust overview can be found in the surveys of Rubel [97, 98, 99].

Definition 2.27 (D-algebraic functions) An analytic function or formal series F(z)
is differentially algebraic (D-algebraic) over a field K ⊂ C if there exists a non-zero
polynomial P(x0, x1, . . . , xd) with coefficients in K such that F and its derivatives
satisfy the algebraic differential equation (ADE)

P
(
F, F ′, . . . , F(d)

)
= 0.

For a function or series F, satisfying an ADE is equivalent to the apparently weaker
condition that there exists amultivariate polynomialQ with coefficients inK such that
Q

(
z, F, F ′, . . . , F(d)

)
= 0. For n sufficiently large the coefficients fn of a D-algebraic

function F(z) satisfy a recurrence of the form

p(n) fn = qn( f0, . . . , fn−1),

where p and the qn are polynomials which can be explicitly computed from an
annihilating ADE. In particular, a power series solution of an ADE is still uniquely
determined by a finite number of initial terms, and given these initial terms the
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coefficient fn can be determined in polynomial time with respect to n. A good
discussion of the complexity of basic operations with ADEs, such as extending
known solutions, can be found in van der Hoeven [116].

Examples of D-Algebraic Series

The family of D-algebraic functions includes all generating function classes so
far discussed, and is closed under sum, product, difference, quotient, composition,
and compositional inverse, when defined; components of a system of ADEs are
themselves D-algebraic. Unlike D-finite functions, analytic D-algebraic functions
can have an infinite number of singularities. Examples above such as tan(z) and the
generating function of partitions are non-D-finite but D-algebraic.

Perhaps the most famous combinatorial example of a D-algebraic function is
Tutte’s derivation [114] of the equation

2q2(1 − q)z + (qz + 10H − 6zH ′)H ′′ + q(4 − q)(20H − 18zH ′ + 9z2H ′′) = 0

for the generating function H(z) counting q-coloured rooted triangulations by ver-
tices, for all q ∈ N. Bergeron and Reutenauer [7] show how a large class of ADEs
can be interpreted as the generating functions of certain classes of trees. Solutions
of ADEs have been important in theoretical computer science since Shannon’s anal-
ysis [103] of the Differential Analyzer—an analogue computer designed to solve
differential equations—as a model of computation. In fact, initial value problems of
(first order) D-algebraic systems can simulate universal Turing machines [59]. That
ADEs capture a wide variety of behaviour is not surprising in light of the existence
of so-called universal differential equations; for instance, Duffin [37] showed that for
any real continuous function g(z) there is a four times continuously differentiable
solution of the ADE

2F ′′′′(z)F ′(z)2 − 5F ′′′(z)F ′′(z)F ′(z) + 3F ′′(z)3 = 0

which approximates g(z) to arbitrary accuracy over the real numbers. The first
example of a universal differential equation was given by Rubel [96].

Non-D-Algebraic Functions

Definition 2.28 (hypertranscendence) A non-D-algebraic function is called hyper-
transcendental or transcendentally transcendental.

Well known examples of hypertranscendental functions include the Euler gamma
function Γ(z), the Riemann zeta function, and the ‘lacunary’ series

∑
n≥0 z2n . Im-

portant tools for proving hypertranscendence include theorems related to large gaps
between non-zero power series terms [77], new complexity techniques inspired by
applications in combinatorics [90], and differential Galois theory [118, 62]. In par-
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ticular, differential Galois theory gives a powerful collection of tools for proving
algebraicity, transcendence, and hypertranscendence of functions by reducing such
questions to effectively decidable statements about algebraic groups.

Asymptotics and Decidability

D-algebraic series seem to be on the border between decidability and undecidability,
perhaps tipped to the side of undecidability. There are algorithms to determine when
an ADE admits a formal power series solution, or a smooth C∞ solution, but it is
undecidable to determine whether there is an analytic solution at the origin; see
Denef and Lipshitz [35] for details. Compared to D-finite functions not much is
known about D-algebraic asymptotics, and in general not much can be said. Denef
and Lipshitz [35] show that it is undecidable to detect whether a D-algebraic series
which is analytic at the origin has radius of convergence less than one, or greater than
or equal to one. Recast in terms of coefficient asymptotics, this says it is undecidable
to determine whether the coefficient sequence of an analytic D-algebraic function
exponentially grows. Maillet [79] showed that if F(z) is D-algebraic then its power
series coefficients satisfy | fn | ≤ K(n!)α for some constants α,K > 0 and all n.
Popken [93] showed that if F(z) is D-algebraic and its power series coefficients fn
are algebraic numbers then | fn | ≥ exp

(
−cn(log n)2

)
for some constant c > 0. These

results allow for asymptotic proofs of hypertranscendence for extremely fast growing
or decaying sequences.

Appendix on Complex Analysis

This appendix summarizes the results from complex analysis needed for our asymp-
totic arguments. Because we continually introduce new concepts we do not break
out definitions as in the rest of this text. Full proofs of the results discussed here can
be found in Henrici [65] and Rudin [100].

An open disk centred at a ∈ C is a set of the form D = {z ∈ C : |z − a| < r}
with r > 0. A subset O ⊂ C is open if for any a ∈ O there is an open disk centred
at a which is contained in O, while a domain Ω is a connected open subset of C. A
neighbourhood of a ∈ C is an open subset of C containing a, and a complex-valued
function f (z) is called analytic at z = a if there exists a neighbourhood N of a
where f (z) is represented by a convergent power series,

f (z) =
∑
n≥0

cn(z − a)n (z ∈ N).

We say f is analytic in the domainΩ if it is analytic at each point ofΩ; this is equiva-
lent to f being complex-differentiable inΩ, i.e., that the limit of ( f (z) − f (a))/(z − a)
as z approaches a in the complex plane exists for every a ∈ Ω.
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Two analytic functions defined on a domain Ω which agree on any subset S ⊂ Ω
containing a limit point (including any non-empty open set) must agree on all of Ω.
This uniqueness property, sometimes called the identity theorem, implies that a non-
zero analytic function has a finite number of zeroes in any compact set. If Ω1 and
Ω2 are non-disjoint domains and f : Ω1 → C and g : Ω2 → C are analytic functions
which agree on Ω1 ∩ Ω2 , ∅, then one can analytically continue f by defining
analytic F : Ω1 ∪ Ω2 → C with F(z) = f (z) for z ∈ Ω1 and F(z) = g(z) for z ∈ Ω2.
In this case we say g(z) is a direct analytic continuation of f (z) to Ω2.

Example 2.30 (Analytic Continuation of Series)

The function C(z) = z/(1 − 2z) is analytic in the complex plane, except at the
point z = 1/2. Since C(z) has the convergent power series representation

C(z) =
∑
n≥0

cnzn =
∑
n≥1

2n−1zn

for |z | < 1/2, where (cn) is the counting sequence of integer compositions, we can
view this rational function as a direct analytic continuation of the generating function
of integer compositions from the disk {|z | < 1/2} to C \ {1/2}.

More generally, we say that g is an analytic continuation of f if there exists
a sequence of direct analytic continuations on consecutively overlapping domains
Ω1,Ω2, . . . ,Ωr beginning with f and ending with g. The analytic continuation g is
uniquely determined by the sequence of domains Ωj .

Complex Integration

A curve γ : [a, b] → C is a piecewise continuously differentiable function from
the real interval [a, b] into the complex numbers; when γ(t) = γ1(t) + iγ2(t) for real
functions γ1 and γ2 this states that γ1 and γ2 are piecewise continuously differentiable
as functions from [a, b] to R. If f (z) is a complex-valued function on γ then the
complex path integral of f over γ is∫

γ
f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt,

when this integral exists. If f (z) = u(z) + iv(z) for u, v : C→ R then∫
γ

f (z)dz =
∫
γ

u(z)dz + i
∫
γ
v(z)dz.
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The integral is parametrization independent: it depends only on the image γ([a, b]),
not on the actual function γ.

Example 2.31 (A Circular Integral)

The curve defined by γ(t) = eit for t ∈ [−π, π] describes the unit circle in C. If n ∈ Z
and n , −1 then∫

γ
zndz =

∫ b

a

γ(t)nγ′(t)dt =
∫ π

−π
ieit(1+n)dt =

eit(1+n)

1 + n

����π
t=−π

= 0,

while ∫
γ

z−1dz =
∫ π

−π
ieit(1−1)dt = 2πi.

A curve γ is closed if γ(a) = γ(b) and simple if γ is injective except for potentially
having γ(a) = γ(b). Two curves γ and γ′ with the same endpoints are homotopic in
the domainΩ if one can be continuously deformed into the other while staying inΩ.
A loop in a domain Ω is a simple closed curve which can be continuously deformed
to a single point while staying inΩ. A loop divides C into two regions, one of which,
called the interior of the loop, is finite. A loop is positively oriented if the interior
of the loop is on the left when tracing the path of the loop; for example, the loop
defined by γ(t) = eit as t goes from −π to π is positively oriented. The domain Ω is
simply connected if every simple closed curve is a loop.

The following results are fundamental to complex analysis and form the bedrock
of our asymptotic methods. First, deforming a curve of integration does not affect
an integral as long as the curve stays in a domain where the integrand is analytic.

Proposition 2.20 (Path Independence of Integration) Suppose f is analytic in the
domain Ω. If γ and γ′ are homotopic curves in Ω then∫

γ
f (z)dz =

∫
γ′

f (z)dz.

In particular, if γ is a loop in Ω then
∫
γ

f (z)dz = 0.

The relationship between a function’s power series coefficients and its analytic
behaviour comes from the next result.

Proposition 2.21 (Cauchy Integral Theorem) Suppose f is analytic in the do-
main Ω and D = {z : |z − a| ≤ r} ⊂ Ω for some r > 0. If γ = {z : |z − a| = r} is the
positively oriented boundary of the disk D, w is in the interior of D, and n ∈ N, then

f (n)(w) =
1

2πi

∫
γ

f (z)
(z − w)n+1 dz,

where f (n) denotes the nth derivative of f , with f (0)(z) = f (z).
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The following bound comes from the definition of a complex integral and the triangle
inequality.

Proposition 2.22 (MaximumModulus Integral Bound) If f (z) is continuous on a
curve γ then ����∫

γ
f (z)dz

���� ≤ length(γ) ·max
z∈γ
| f (z)|,

where length(γ) is the arc length of the curve.

Singular Behaviour

Roughly speaking, a singularity of a function f (z) is a point near which f behaves
badly. Examining local behaviour of a function around such points will be key to our
asymptotic methods. For our purposes we need only consider a few common types
of singularities.

1. Isolated Singularities

The open annulus of radii 0 ≤ r < R ≤ ∞ centred at z = a is the set Ar,R(a) =
{z ∈ C : r < |z − a| < R}, and a punctured disk centred at a is an open annulus
centred at a with r = 0. We say that z = a is an isolated singularity if there exists a
punctured disk centred at a where f is analytic, but f is not analytic at a and cannot
be made analytic solely by changing (or defining for the first time) the value of f (a).

Proposition 2.23 Let a ∈ C, let 0 ≤ r < R ≤ ∞, and suppose f is analytic in the
annulus Ar,R(a). Then f can be represented by a unique Laurent expansion

f (z) =
∞∑

n=−∞

cn(z − a)n =
∞∑
n=1

c−n(z − a)−n +
∞∑
n=0

cn(z − a)n (2.16)

for all z ∈ Ar,R(a), with uniform convergence on any compact subset of Ar,R(a).

Suppose the expansion (2.16) is valid in a punctured disk around z = a.
When cn = 0 for n < 0 in (2.16) then f is analytic at z = a or can be made
analytic there by defining f (a) = c0. Conversely, if there exists n < 0 with cn , 0
then z = a is an isolated singularity of f . The coefficient c−1 of the expansion (2.16)
is called the residue of f at z = a and denoted Resz=a f (z).

Note that unlike formal Laurent series, convergent Laurent expansions can have
an arbitrary number of terms with negative exponents. There are thus two types of
isolated singularities, characterized by the coefficients cn in (2.16) which vanish.

• If there exists M > 0 such that c−M , 0 but cn = 0 for all n ≤ −M , then we say
that a is a pole of order M . A pole of order 1 is called a simple pole. When f
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is analytic or has a pole at z = a we say that f is meromorphic at z = a, and
there exists a punctured disk D centred at a and analytic functions g(z) and h(z)
such that f (z) = g(z)/h(z) for z ∈ D. When g vanishes to order s at a ∈ Ω and h
vanishes to order r at a, i.e., if

g(a) = g′(a) = · · · = g(s)(a) = h(a) = h′(a) = · · · = h(r)(a) = 0

but g(s+1)(a) and h(r+1)(a) are nonzero, then z = a is a singularity of f (z) if
and only if r > s, in which case z = a is a pole of order M = r − s. We
say f is meromorphic in a domain Ω if it is meromorphic at each point of Ω;
a ratio of analytic functions in Ω is always meromorphic in Ω. Near a polar
singularity, f behaves like a rational function whose denominator is going to
zero. The following result, useful for calculating residues, follows from (2.16)
and repeated term-by-term differentiation.
Lemma 2.4 When f (z) has a pole of order M at z = a then

Res
z=a

f (z) =
1

(M − 1)!
lim
z→a

dM−1

dzM−1 (z − a)M f (z).

If f (z) = g(z)/h(z) with h(a) = 0 but h′(a), g(a) , 0 then z = a is a simple pole
of f (z) and Resz=a f (z) = g(a)/h′(a).

• If there exist an infinite number of indices n < 0 such that cn , 0 in (2.16) then f
has an essential singularity at z = a. Behaviour near an essential singularity is
more complicated than behaviour near a pole: Picard’s Great Theorem states that
in any neighbourhood of an essential singularity f (z) takes on every complex
value, except possibly one, infinitely many times. An example of an essential
singularity is the function f (z) = e1/z at z = 0, which takes on every value but
zero infinitely many times in any neighbourhood of the origin.

Example 2.32 (Residues of Tangent)

The function tan(z) = sin(z)/cos(z) is meromorphic in Ω = C and its singularities
form the set S = {(k + 1/2)π : k ∈ Z} of zeroes of cos(z). The numerator sin(z) and
the derivative cos(z)′ = − sin(z) are non-zero when z ∈ S, so every singularity of
tan(z) is a simple pole and Lemma 2.4 implies

Res
z=(k+1/2)π

tan(z) =
sin((k + 1/2)π)
− sin((k + 1/2)π)

= −1.

Residue computations can be used to evaluate integrals ofmeromorphic functions.

Proposition 2.24 (Cauchy Residue Theorem) Let f (z) be a meromorphic function
on a domain Ω ⊂ C, and let γ be a positively oriented loop in Ω on which f is
analytic. If a1, . . . , ar denote the poles of f (z) interior to γ then
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1
2πi

∫
γ

f (z)dz =
r∑
j=1

Res
z=a j

f (z).

2. Algebraic and Logarithmic Branch Points

A function with an isolated singularity at z = a is not analytic at a but does have a
convergent series expansion in some punctured disk around a. When dealing with
algebraic and D-finite generating functions we must consider more general singular
behaviour, arising from a need to take inverses of non-injective functions.

Example 2.33 (Square-Root Branches)

Because the function z 7→ z2 is not injective, one must carefully define an inverse
function z 7→

√
z. Given z ∈ C \ R≤0, the principal argument Arg(z) is obtained by

writing z = reiθ for real r and −π < θ < π, and taking Arg(z) = θ. The principal
branch square-root is the analytic function f : C \ R≤0 → C defined by

f (z) =
√

z =
√
|z | eiArg(z)/2,

where
√
|z | is the usual square-root on R>0. One cannot extend f (z) to an analytic

function on any punctured disk around the origin as the limit of f does not exist at
any negative real number:

lim
θ→π

f
(
εeiθ

)
=
√
εeiπ/2 = i

√
ε , −i

√
ε =
√
εe−iπ/2 = lim

θ→−π
f
(
εeiθ

)
for any ε > 0, while εeiπ = −ε = εe−iπ . Removing the set R≤0 from the domain of f
to obtain an analytic function is called making a branch cut. In fact, removing any
simple curve from the origin to infinity gives a valid branch cut and any continuous
choice of the argument function on the branch cut defines an analytic branch of
the square-root. For any r ∈ Q \ Z the branches of zr are defined by an analogous
process.

Example 2.34 (Logarithm Branches)

Similarly, the principal branch logarithm is the function defined by

Log(z) = log |z | + iArg(z)

for z ∈ C\R≤0, where log |z | is the usual logarithm onR>0 andArg(z) is the principal
argument of z. Different branches of the logarithm can be defined by removing any
simple curve from the origin to infinity and selecting any continuous choice of the
argument function after taking the branch cut. At any z ∈ C, all branches of the
logarithm which are defined at z differ by some integer multiple of 2πi.
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A cut disk around a point a ∈ C is a disk around a with a simple curve from a
to the boundary of the disk removed. The function f (z) has an algebraic singularity
or algebraic branch point at a ∈ C if it can be represented by a convergent series
expansion of the form

f (z) =
∑
n≥N

cn
(
(z − a)1/R

)n
in a cut disk D centred at a, where N ∈ Z, R ∈ N, the map t 7→ t1/R is defined by a
consistent branch in D, and there exists cn , 0 where n/R < Z. Equivalently, f (z) is
not analytic at z = a but f (zR + a) is meromorphic at the origin for some R ∈ N>1.

The function f (z) has a logarithmic singularity or logarithmic branch point
at a ∈ C if f (z) can be represented by a convergent series expansion of the form

(z − a)N
d∑
j=0

(
Cj(z) (log(z − a))j

)
in a cut disk D centred at a, where N ∈ Z, d > 0, the logarithm is defined by a
consistent branch in D, and eachCj(z) is analytic at a. Finally, an algebro-logarithmic
singularity is a combination of algebraic and logarithmic singularities, that is, a point
where f (z) can be locally represented in a cut disk by a series of terms containing
natural number powers of logarithms and Rth roots for some positive integer R > 1.

3. General Singularities

More generally, let γ be a loop and f (z) be an analytic function on the interior of γ.
We say that a ∈ γ is a singularity of f (z) if f (z) cannot be analytically continued
to a neighbourhood containing a. When discussing singularities of a generating
function, the interior of the loop γ should contain the origin. This definition contains
the singularities discussed above, and many more.

Example 2.35 (Natural Boundaries)

Problem 2.18 asks you to prove that the function F(z) =
∑

n≥0 z2n defined for |z | < 1
cannot be analytically continued outside the unit circle, meaning every point on the
unit circle is a singularity of F (we say the unit circle is a natural boundary of F).
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The Gamma Function

The Euler gamma function Γ(z), arising in our asymptotic results on algebraic and D-
finite functions, is defined by Γ(z) =

∫ ∞
0 e−t tz−1dt when the real part<(z) > 0 (so the

integral converges) and is uniquely extended to the complex plane with the negative
integers removed by analytic continuation; it has a simple pole at each negative
integer. Integration by parts shows that Γ(z + 1) = zΓ(z) and Γ(1) =

∫ ∞
0 e−tdt = 1,

so Γ(n+1) = n! for any n ∈ N. The gamma function can thus be viewed as an analytic
extension of the factorial function to non-integers. In fact, the gamma function is the
unique analytic extension subject to the additional constraint that log(Γ(x)) is convex
for x > 0. The value Γ(1/2) =

∫ ∞
0 t−1/2e−tdt =

√
π and the recurrence satisfied by

Γ(z) allows one to calculate the gamma function at any half-integer. Stirling’s formula
gives an asymptotic expansion Γ(z) ∼ zz−1/2e−z

√
2π

(
1 + z−1/12 + z−2/288 + · · ·

)
as |z | → ∞ with the argument of z fixed in (−π, π). Proofs of these results, and
further details, can be found in Andrews et al. [3, Ch. 1].

Problems

2.1 Prove Lemma 2.1.

2.2 ForF =
∑

n≥0 fnzn andG =
∑

n≥0 gnzn inK[[z]], define d(F,G) = 2−min{n : fn,gn },
where d(F,G) = 0 if F = G. Prove that d satisfies the strong triangle inequality,

d(F,H) ≤ max {d(F,G), d(G,H)} , for all F,G,H ∈ K[[z]].

Since d is symmetric, and d(F,G) ≥ 0 with equality if and only if F = G, this
implies d defines a non-archimedean metric on K[[z]].

2.3 A sequence of formal power series (Fn) in K[[z]] is called Cauchy if for ev-
ery ε > 0 there exists N ∈ N such that d(Fn, Fm) < ε whenever n,m ≥ N . Prove
that every Cauchy sequence in K[[z]] converges to an element of K[[z]] under the
metric d. This implies K[[z]] forms a complete non-archimedean metric space.

2.4 Suppose F(z) =
∑

n≥0 fnzn and G(z) =
∑

n≥0 gnzn are elements of K[[z]]
with g0 = 0. Prove that the sequence (SN ) in K[[z]] defined by SN =

∑N
k=0 fkG(z)k

converges inK[[z]]. We define the composition F(G(z)) as the limit of this sequence,
F(G(z)) = limN→∞ SN =

∑
k≥0 fkG(z)k .

2.5 Suppose F(z) =
∑

n≥0 fnzn ∈ K[[z]] with f0 , 0. Show that F(z) = f0 − zG(z)
for some G ∈ K[[z]], and prove that the infinite series

∑
k≥0 zkG(z)k/ f k+1

0 converges
to I(z) ∈ K[[z]] satisfying F(z)I(z) = 1.

2.6 Prove that set of formal series in Q[[z]] which define analytic functions at the
origin is dense in Q[[z]]. In other words, show that for any F ∈ Q[[z]] there is a
sequence of analytic power series whose limit in the metric space Q[[z]] is F.
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2.7 Prove that the coefficient of z100 in the rational function

F(z) =
1

(1 − z)(1 − z5)(1 − z10)(1 − z25)

gives the number of ways to make change for a dollar using pennies (1 cent), nickels
(5 cents), dimes (10 cents), and quarters (25 cents), and find that coefficient. Find a
recurrence for the number of ways fn to make change for n cents.

2.8 The Lagrange inversion formula states that if u, R ∈ Q[[z]] satisfy u(0) = 0 and
z = u(z)/R(u(z)) then [zn]u(z) = 1

n [t
n−1]R(t)n for n > 0. Prove this by justifying the

calculation

n[zn]u(z) = [zn−1]u′(z) =
1

2πi

∫
u′(z)

zn
dz =

1
2πi

∫
R(u)n

un
du = [tn−1]R(t)n.

Start by showing you may assume R and u are polynomials. Use the Lagrange
inversion formula to find the coefficients of the power series y(z) satisfying y =

z + zy2, which counts rooted trees where each node is a leaf or has two children.

2.9 Let A ⊂ Q[[z]] denote series of rational functions with natural number coeffi-
cients such that if σ is a dominant singularity then σ/|σ | is a root of unity. Prove
that for any a, b ∈ A the functions a(z) + b(z), a(z)b(z), and 1/(1 − za(z)) are in A,
establishing Proposition 2.6. Hint: For the final construction suppose the dominant
singularities of a ∈ A have modulus p > 0 and let c(z) = 1/(1 − za(z)). Show
that the equation za(z) = 1 has a unique root r ∈ (0, p), and that z = r is a domi-
nant singularity of c(z). Conclude that any dominant singularity θ of c(z) satisfies
θa(θ) = 1 = ra(r) so θk = rk = |θ |k for some k ∈ N.

2.10 Prove that the series F(z) =
∑

n≥0
(2n
n

)κ
zn is transcendental over Q(z) for any

natural number κ ≥ 2.

2.11 Prove that if ( fn) satisfies a P-recursive equation of order r and degree d then
F(z) =

∑
n≥0 fnzn ∈ K[[z]] satisfies a D-finite equation of order at most d and

degree at most r + d.

2.12 Let an be the number of alternating permutations (satisfying π1 > π2 < π3 >
π4 < . . . ) when n is odd and zero when n is even. Let

T(z) =
∑
n≥0

an
n!

zn =
∑
k≥0

a2k+1

(2k + 1)!
z2k+1.

• By considering the location of 1 in a permutation, prove that for all k ≥ 1

a2k+1 =
∑

1≤ j≤2k
j odd

(
2k
j

)
aja2k−j

• Using this recurrence, show that T ′(z) = T(z)2 + 1.
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• Solve the differential equation to conclude T(z) = tan z.

2.13 For any positive integer B let SB denote the square in the complex plane with
corners ±Bπ ± Bπi. Using the hyperbolic trigonometric functions and the fact that

| tan(x + iy)|2 =
tan(x)2 + tanh(y)2

1 + tan(x)2 tanh(y)2
=

cosh(y)2 − cos(x)2

cosh(y)2 + cos(x)2 − 1

for all x, y ∈ R, prove that if z ∈ SB for B ∈ N then | tan z | ≤ 1
tanh(π) < 1.1. Adapt

the argument in Section 2.1.1 to prove that for any n ∈ N and positive integer B the
number an of alternating permutations satisfies

an
n!
= 2

(
2
π

)n+1 B−1∑
k=0

1
(2k + 1)n+1 +O ((πB)−n) .

2.14 Let A be a commutative ring and

P(z) = pnzn + · · · + p1z + p0

Q(z) = qmzm + · · · + q1z + q0

be polynomials of degree n and m in A[z]. The Sylvester matrix S(P,Q) of P and Q
is the (m+ n) × (m+ n)matrix obtained by repeating m times the vector (pn, . . . , p0)

with each copy shifted once over, then repeating n times the vector (qm, . . . , q0) with
each copy shifted once over. For instance, if n = 4 and m = 3 then

S(P,Q) =

©«

p4 p3 p2 p1 p0 0 0
0 p4 p3 p2 p1 p0 0
0 0 p4 p3 p2 p1 p0
q3 q2 q1 q0 0 0 0
0 q3 q2 q1 q0 0 0
0 0 q3 q2 q1 q0 0
0 0 0 q3 q2 q1 q0

ª®®®®®®®®®¬
.

Define the resultant Resultantz(P,Q) of P and Q as the determinant of S(P,Q).

a) Show that Resultantz(P,Q) lies in A.
b) Prove that if P andQ share a root α thenResultantz(P,Q) = 0.Hint: It is sufficient

to prove the existence of a non-zero vector x such that S(P,Q)x = 0.
c) Suppose that

P(z) = a(z − α1) · · · (z − αn) and Q(z) = b(z − β1) · · · (z − βm)

for αi, βj ∈ C. Prove that Resultantz(P,Q) = R where R = ambn
∏

i, j(αi − βj).
Hint: Consider Resultantz(P,Q) and R to be multivariate polynomials in new
variables αi and βj . Show that R divides the resultant and consider their degrees.

2.15 Suppose a(x) and b(x) are algebraic series satisfyingP(x, a(x)) = Q(x, b(x)) = 0
for non-zero P(x, y),Q(x, y) ∈ Q[x, y], and let d = degy(P). Prove that
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• y = a(z) + b(z) is a root of Resultantz(P(x, y − z),Q(x, y)) ∈ Q[y, z]
• y = a(x)b(x) is a root of Resultantz(zdP(x, y/z),Q(x, y)) ∈ Q[y, z]
• when a(0) , 0 then y = 1/a(x) is a root of Resultantz(P(x, y), 1 − yz) ∈ Q[y, z]

2.16 Use Cauchy’s integral formula and the maximum modulus integral bound to
show that if f (z) is analytic in a disk |z | ≤ R + ε then it is represented at the origin
by a power series which converges in |z | ≤ R. Conclude that a power series admits
a singularity on the boundary of its domain of convergence.

2.17 What is wrong with the “proof”

1 =
√

1 =
√
(−1)(−1) =

√
−1
√
−1 =

(√
−1

)2
= −1

2.18 Let F(z) =
∑

n≥0 z2n and ζ ∈ C with |ζ | = 1. Show that F(z) is unbounded
in any neighbourhood of ζ inside the unit circle, and conclude that F cannot be
analytically continued outside the unit circle.
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Chapter 3
Multivariate Series and Diagonals

The residues of this kind occur naturally in several branches of
the algebraic analysis and of the infinitesimal analysis. Their
consideration provides simple and easy to use methods which
apply to a large number of diverse questions, and new formulas
which seem to merit the attention of geometers.
— Augustin-Louis Cauchy

They that are ignorant of Algebra cannot imagine the wonders in
this kind are to be done by it: and what further improvements and
helps advantageous to other parts of knowledge the sagacious
mind of man may yet find out, it is not easy to determine.
— John Locke

In this chapter we study multivariate series, because they encode multivariate se-
quences but also because they can serve as efficient data structures for univariate
sequences. For readability we use bold variables to denote multivariate quantities,
typically of dimension d ∈ N>0, and use multi-index notation to denote multivariate
quantities, so that

z = (z1, . . . , zd) and dz = dz1 dz2 . . . dzd,

and for k ∈ {1, . . . , d} and i ∈ Rd ,

zi = zi11 · · · z
id
d
, z

k̂
= (z1, . . . , zk−1, zk+1, . . . , zd), ẑ = z

d̂
.

Given a (multivariate) differentiable function F(z) we write Fz j (z) to denote the
(partial) derivative of F with respect to the variable zj .

Definition 3.1 (multivariate formal series)Amultivariate formal power series over
a field K in the variables z is a formal expression

F(z) =
∑
i∈Nd

fizi =
∑

(i1,...,id )∈Nd

fi1,...,id zi11 · · · z
id
d
,

with coefficients fi ∈ Kd . Analogously to the univariate case,we define the coefficient
extraction operator [zi]F(z) = fi and make the ring of multivariate formal power
series K[[z]] by defining addition termwise∑

i∈Nd

fizi +
∑
i∈Nd

gizi =
∑
i∈Nd

( fi + gi) zi

and multiplication by the Cauchy product

93
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i∈Nd

fizi

) ( ∑
i∈Nd

gizi

)
=

∑
k∈Nd

©«
∑

i+j=k
figj

ª®¬ zk.

Note that the Cauchy product is well defined since for each k ∈ Nd there are only a
finite number of elements i, j ∈ Nd such that i + j = k.

One could also defineK[[z]] iteratively, starting with the univariate formal power
series ring K[[z1]] and taking K[[z]] = (K[[z1, . . . , zd−1]]) [[zd]]; our definition is
isomorphic to the iterated one, meaning the iterated definition does not depend on
the ordering of the variables (compare this to iterated Laurent series in Section 3.3).

3.1 Complex Analysis in Several Variables

As in the univariate case, we deal mainly with multivariate series over K ⊂ C which
represent analytic functions. We now recap the basics of complex analysis in several
variables, specialized to fit our needs. Standard accounts of complex analysis in
several variables can be found in Hörmander [39] and Krantz [44].

Once again, our most basic analytic object is a convergent power series expansion.

Definition 3.2 (polydisks and polytori) Given a point a ∈ Cd and r ∈ Rd
>0, the

open polydisk Da(r) centred at z = a of radius r is defined as a product of disks

Da(r) = {z ∈ Cd : |z1 − a1 | < r1, . . . , |zd − ad | < rd},

and the polytorus Ta(r) centred at z = a of radius r is defined as a product of circles

Ta(r) = {z ∈ Cd : |z1 − a1 | = r1, . . . , |zd − ad | = rd}.

Remark 3.1 The polytorus Ta(r) is a subset of the boundary ∂Da(r).

For convenience we often drop the subscript when a = 0, and for an arbitrary
complex vector w ∈ Cd with non-zero coordinates we let

D(w) = {z ∈ Cd : |z1 | < |w1 |, . . . , |zd | < |wd |}

and T(w) = {z ∈ Cd : |z1 | = |w1 |, . . . , |zd | = |wd |},

denote the polydisk and polytorus with radii r = (|w1 |, . . . , |wd |).

Definition 3.3 (analytic functions and absolute convergence) A series
∑

n≥0 cn
with complex summands is called absolutely convergent if

∑
n≥0 |cn | converges. A

function F : Cd → C is analytic at the point a ∈ Cd if there exists a radius r ∈ Rd
>0

such that F(z) is represented by an absolutely convergent power series

F(z) =
∑
i∈Nd

fi(z − a)i =
∑
i∈Nd

fi(z1 − a1)
i1 · · · (zd − ad)

id
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for z ∈ Da(r). Such a series is said to be centred at a.

At first glance it may not be clear how to sum the terms of a multivariate series.
Helpfully, the terms of an absolutely convergent series can be rearranged without
affecting convergence or changing the value of the series (see Problem 3.1) so
the terms of a power series representing an analytic function can be summed in any
reasonable order. The following result implies our insistence on absolute convergence
is not a large restriction: if a power series converges at w ∈ C then the power series
absolutely converges at any point coordinate-wise closer to the centre of the series.
For convenience we state the result for series centred at the origin.

Lemma 3.1 (Abel’s Lemma) If w ∈ Cd is such that supi∈Nd | fiwi | is finite then∑
i∈Nd fizi converges absolutely for any z ∈ Cd with |zj | < |wj | for all 1 ≤ j ≤ d.

Proof Let C = supi∈Nd | fiwi |. The result holds vacuously if w has a zero coordinate.
If z ∈ Cd is such that the maximum of |z j |

|wj |
for 1 ≤ j ≤ d is some t < 1 then

�� fizi�� = �� fiwi�� |zi |

|wi |
≤ Cti1+· · ·+id ,

so ∑
i∈Nd

�� fizi�� ≤ C
∑
i∈Nd

ti1+· · ·+id =
C

(1 − t)d

is finite. A bounded series with non-negative terms always converges. �

Definition 3.4 (domains, neighbourhoods, and analyticity) A subset O ⊂ Cd is
called open if for all z ∈ O there is an open polydisk centred at z which is contained
in O. Analogously to the univariate case, a domain in Cd is an open and connected
subset ofCd and a neighbourhood of a ∈ Cd is an open set containing a. We say F(z)
is analytic on a domain Ω ⊂ Cd if it is analytic at every point of Ω, and entire if it is
analytic on all of Cd .

The product and sum of two absolutely convergent series are absolutely convergent,
and if f (z) and g(z) are represented by absolutely convergent power series on a
domain Ω then the series representations for f (z) + g(z) and f (z)g(z) are obtained
by term-wise summation and the Cauchy product, just as for formal series.

Example 3.1 (A Simple Binomial Sum)

The rational function
F(x, y) =

1
1 − x − y

is analytic for any (x, y) ∈ C2 such that x + y , 1. For instance,

F(x, y) =
∑
n≥0
(x + y)n =

∑
n≥0

(∑
k≥0

(
n
k

)
xk yn−k

)
=

∑
(i, j)∈N2

(
i + j

i

)
xiy j
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when (x, y) is sufficiently close to the origin. Note that there is some subtlety
in this derivation, hinting at why we discuss absolute convergence: although the
first equality holds whenever |x + y | < 1, rearrangement is only possible when
the sum converges absolutely. For example, the first series converges when x = 1
and y = −1/2, but many rearrangements of the final series at these values will
diverge. Since

(i+j
i

)
≤ 2i+j for all i, j ∈ N, the final power series representation is

valid, at least, when both |x | and |y | are strictly less than 1/2.

When F(z) is analytic in a domain Ω ⊂ Cd , and a ∈ Ω, fixing

ẑ = (z1, . . . , zd−1) = (a1, . . . , ad−1) = â

in an absolutely convergent power series representation of F(z) gives an absolutely
convergent power series representation of the univariate function f (zd) = F(â, zd)
for zd near ad . An analytic function on a domain is thus analytic in each variable,
when the others are fixed1. This observation allows us to generalize many important
results from complex analysis in a single variable to the multivariate setting by
induction. First is the identity lemma for analytic functions.

Lemma 3.2 (Identity Lemma for Analytic Functions) If f (z) and g(z) are analytic
functions in a domain Ω ⊂ Cd and f (z) = g(z) on a polydisk contained in Ω
then f (z) = g(z) on Ω.

Thus, as in the univariate case, we can identify a function F(z) which is analytic
at the origin with its power series F(z) =

∑
i∈Nd fizi and call fi the power series

coefficients of F(z). The Cauchy integral formula also generalizes to several variables
by induction.

Theorem 3.1 (Multivariate Cauchy Integral Formula for Coefficients) Sup-
pose F(z) is analytic on a domain Ω ⊂ Cd and the closure of a polydisk Da(r)
lies in Ω. If F(z) is represented by the power series

F(z) =
∑
i∈Nd

fi(z − a)i

on Da(r) then, for all i ∈ Nd ,

fi =
1
(2πi)d

∫
Ta(r)

F(z)
(z − a)i+1 dz.

1 In fact, the converse holds. In the 1830s, Cauchy defined a multivariate function to be analytic over
a domain D if it was analytic as a univariate function of each variable at every point in D, and this
definition was also used by Jordan. Weierstrass, on the other hand, called a multivariate function
analytic in a domain D if it had a multivariate power series representation in the neighbourhood
of any point in the domain (Poincaré also used this definition in this doctoral thesis in 1879).
Perhaps illustrating the difficulties working in several variables, the two definitions were not shown
to be equivalent until work of Hartogs [37] in 1906. See Bottazzini and Gray [18, Chapter 9] for
additional historical information on the development of complex analysis in several variables.
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This is the most straightforward generalization of the univariate Cauchy integral
formula, but not the only natural one in the multivariate setting: there is no mul-
tivariate integral formula which generalizes all major properties of the univariate
Cauchy integral formula. For example, the domain of integration in Theorem 3.1 is
the polytorus Ta(r), not the boundary of the polydisk Da(r), so this representation
cannot be easily modified to work with domains other than polydisks. Aı̆zenberg
and Yuzhakov [3, Ch. 1] give a detailed survey of different integral representa-
tions for multivariate analytic functions, which generalize different properties of the
univariate case.

We will also make repeated use of the implicit function theorem, which helps
locally parametrize the solutions of an analytic equation. A proof can be found in
Hörmander [39, Thm. 2.1.2].

Proposition 3.1 (Implicit Function Theorem) If f (ẑ, y) is an analytic function at
w ∈ Cd and the partial derivative fy(w) , 0 then for ẑ in a neighbourhood of ŵ
there is a unique analytic function g(ẑ) with g(ŵ) = wd such that f (ẑ, y) = 0 if and
only if y = g(ẑ).

3.1.1 Singular Sets of Multivariate Functions

One of the most challenging difficulties moving from one to many variables is the
diverse behaviour of the singular sets which arise. For our purposes it is sufficient to
consider multivariate generalizations of meromorphic functions, whose singularities
are defined (at least in a neighbourhood of each point) by explicit equations. We will
see that increasing dimension allows rational functions to capture more complicated
behaviour, such as that of algebraic series.

Definition 3.5 (multivariate singularities) Suppose g(z) and h(z) are analytic func-
tions in a domain Ω, with h(z) not identically zero, and define f (z) = g(z)/h(z)
when h(z) , 0. Since h is analytic and not identically zero, Lemma 3.2 implies f (z)
is defined at some point in any polydisk. We say that f has a singularity at a ∈ Ω
if | f (z)| is unbounded in any neighbourhood of a in Ω (where defined).

The denominator h(z) must vanish at any singularity, but h(z) may vanish at a point
which is not a singularity.

Example 3.2 (Singularities of Multivariate Functions)

The function e(x, y) = (x + y)/(x − y) has a singularity at every point (x, y) ∈ C2

where x = y. Note that even though the numerator and denominator both vanish at
the origin this is still a singularity, since, for instance,

e
(
1
n
+

1
n2 ,

1
n

)
= 2n + 1
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is unbounded as n→∞. On the other hand, the function f (x, y) = sin(x− y)/(x− y)
has no singularities in C2. Indeed, taking a power series expansion of sin(x − y)

shows

f (x, y) =
sin(x − y)

x − y
=

∑
n≥0

(x − y)2n(−1)n

n!

for all (x, y) with x , y. This series is absolutely convergent for all x, y ∈ C2,
so | f (x, y)| is bounded in any bounded set.

Definition 3.6 (meromorphic functions) A function f (z) is called meromorphic at
a ∈ Cd if there exists a polydisk D centred at a and analytic functions g(z) and h(z)
onD, with h not identically zero, such that f (z) = g(z)/h(z) inD whenever h(z) , 0.
Note that f (z) need not be defined at a, and we say that a is a singularity of f if it is
a singularity of g(z)/h(z). A function f (z) is meromorphic on a domain Ω ⊂ Cd if
it is meromorphic at each point of Ω.

Thus, a meromorphic function is one that can locally be written as a fraction of
analytic functions, and a singularity of a meromorphic function is a point where this
ratio behaves badly.

By far the most important situation for us is when F(z) = G(z)/H(z) ∈ C(z) is
a rational function, defined and analytic at least on the complement of the zero set
of H(z) in Cd . The following result shows that if G and H are coprime polynomials
then the zero set of H(z) is precisely the set of singularities of F(z).

Proposition 3.2 Let F(z) = G(z)/H(z) ∈ C(z) be the ratio of coprime polynomials
G and H. Then the singular set of F(z) is the setV = {z ∈ Cd : H(z) = 0}.

Proof We need to show that if H(w) = 0 for some w ∈ C then F(z) is unbounded
in any neighbourhood of w. Without loss of generality, we may assume that w = 0.
If G(0) , 0 the result is immediate, since the denominator of F approaches zero
as z → 0 while the numerator of F is bounded away from zero. For the same
reason, it is sufficient to prove that any neighbourhood of 0 contains a point ζ such
that G(ζ ) , 0 but H(ζ ) = 0. Since G(z) and H(z) are coprime as polynomials, they
are coprime as elements of C(z1, . . . , zd−1)[zd], so the extended Euclidean algorithm
implies the existence of polynomials a, b, c ∈ C[ẑ] with a non-zero such that

a(ẑ) = b(ẑ)G(z) + c(ẑ)H(z). (3.1)

We claim that for any ẑ in a sufficiently small neighbourhood N of the origin there
exists tẑ ∈ C such that H(ẑ, tẑ) = 0. Assuming this, if G(ẑ, tẑ) = 0 for each ẑ ∈ N then
the non-zero polynomial a(ẑ) in (3.1) would vanish in a neighbourhood of the origin,
a contradiction. Thus, assuming the claim any sufficiently small neighbourhood of
the origin contains a point ζ with H(ζ ) = 0 and G(ζ ) , 0, as desired.

It remains only to prove the existence of tẑ for ẑ sufficiently close to the origin.
Problem 3.2 asks you to show that after an invertible linear change of variables the
polynomial H(0, 0, . . . , 0, zd) is not identically zero. Since H(z) can be considered
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a polynomial in zd whose coefficients are polynomials in z1, . . . , zd−1, this implies
pẑ(zd) = H(ẑ, zd) is a non-zero polynomial in zd whenever ẑ is fixed and sufficiently
close to the origin. Any root of pẑ(zd) can be taken as tẑ, proving the claim. �

Hörmander [39, Thm 6.2.3] shows that Proposition 3.2 holds for ratios of analytic
functions, after suitably defining what it means for two analytic functions to be
coprime (in fact, other than preliminary results setting up the local algebraic structure
of analytic functions, the proof in the meromorphic case is very similar). If f (z) is
analytic at a point w ∈ Cd and f (w) , 0 then 1/ f (z) is also analytic at w. Since
a ratio of polynomials (or analytic functions) can be locally reduced to a ratio of
coprime polynomials (respectively analytic functions), we thus have the following.

Corollary 3.1 Let F(z) be a meromorphic function. Then F(z) is analytic at w ∈ Cd
if and only if z = w is not a singularity of F(z).

When G(z) and H(z) are coprime and F(z) = G(z)/H(z) is a rational function
with singularity z = a, there are two types of behaviour to consider.

1) If H(a) = 0 but G(a) , 0 then F(z) behaves like a univariate function near a pole:
the limit of |F(z)| as z→ a equals infinity.

2) If H(a) = G(a) = 0 then F behaves like a univariate function near an essential
singularity: for any fixed C ∈ C the equation F(z) = C has a solution2 in all
sufficiently small neighbourhoods of a.

We will see that finding asymptotics of power series coefficients determined by
singularities of the first type leads to more explicit and easier-to-apply formulas,
although effective methods still exist for the second case. Since any root of a poly-
nomial in at least two variables is not isolated, any singularity of a rational function
in at least two variables is not isolated. Similarly, a zero of an analytic function f (z)
in at least two variables is never isolated3, giving the following result.

Proposition 3.3 If F(z) is a meromorphic function in a domainΩ ⊂ Cd where d ≥ 2
then no singularity of F(z) in Ω is isolated.

Proposition 3.3 hints at a major computational difficulty when applying the meth-
ods of analytic combinatorics in several variables: unlike univariate functions, which
typically have a finite number of dominant singularities that can be checked one-by-
one, in themultivariate setting there will always be an infinite number of singularities
to sort through.

2 Note that I (z) = G(z) − CH(z) and H(z) are coprime, so our proof of Proposition 3.2 shows
every neighbourhood of a contains a point where I (z) is zero and H(z) is non-zero.
3 This follows from the Weierstrass preparation theorem [39, Thm. 6.1], which describes the zero
set of an analytic function f (z) as the vanishing of a polynomial in zd whose coefficients are
analytic functions in ẑ.
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3.1.2 Domains of Convergence for Multivariate Power Series

In one variable, the domain of convergence of a power series is a disk centred at the
point of expansion. In the multivariate setting, things are more complicated.

Definition 3.7 (domains of convergence) The (open) domain of convergence of
a power series is the set of points z ∈ Cd such that the power series converges
absolutely in some neighbourhood of z.

Note that for us a domain of convergence is always an open set. We will make
great use of the fact that domains of convergence are convex subsets of Rd after
taking coordinate-wise moduli and then taking logarithms.

Definition 3.8 (Relogmapand logarithmic convexity)LetC∗ be the set of non-zero
complex numbers. The real-logarithm (Relog) map from Cd∗ to Rd is the function

Relog(z) = (log |z1 |, log |z2 |, . . . , log |zd |) .

For notational convenience we occasionally extend the Relog map to all of Cd by
defining log 0 = −∞. A set Ω ⊂ Cd is called logarithmically convex (log-convex) if
its image under the Relog map is convex. Equivalently, Ω is log-convex if a, b ∈ Ω
implies (

|a1 |
t |b1 |

1−t, . . . , |ad |
t |bd |

1−t
)
∈ Ω

for all t ∈ [0, 1].

Proposition 3.4 Suppose F(z) =
∑

i∈Nd fizi is a power series centred at the origin
with domain of convergenceD. ThenD is logarithmically convex and a point z ∈ Cd
lies in the closure D if and only if the open polydisk D(z) is contained in D.

Proof Lemma 3.1 implies thatD is the interior of the set B = {z : supi | fizi | finite},
so it is sufficient to prove B is log-convex. Suppose x, y ∈ Cd satisfy supi | fixi | ≤ C
and supi | fiyi | ≤ C for some C ≥ 0. If w =

(
|x1 |

t |y1 |
1−t, . . . , |xd |t |yd |1−t

)
for

some t ∈ [0, 1] then, for any i ∈ Nd ,�� fiwi�� = �� fixi��t �� fiyi��1−t ≤ C,

so w ∈ B and B is log-convex. If z ∈ D and w ∈ D(z) then | fiwi | < | fizi | so w ∈ D
by Lemma 3.1, and D(z) ⊂ D. �

To apply the methods of analytic combinatorics in several variables we need to
link the analytic behaviour of a convergent power series centred at the origin to its
domain of convergence. The following result generalizes Proposition 2.2 in Chapter 2
to the multivariate setting; its proof is Problem 3.3.

Proposition 3.5 Suppose F(z) is a meromorphic function, analytic at the origin
where it is represented by a power series with domain of convergence D. If w ∈ Cd
lies on the boundary ∂D then there exists a singularity ζ ∈ Cd of F(z) with the same
coordinate-wise modulus as w.
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Definition 3.9 (minimal singularities) A singularity of meromorphic F(z) which
is on the boundary of the domain of convergence of its power series at the origin
is called a minimal singularity or minimal point. Equivalently, a minimal point w
is a singularity of F such that no other singularity z of F satisfies |zj | ≤ |wj | for
each 1 ≤ j ≤ d with at least one of the inequalities being strict.

Example 3.3 (Minimal Singularities of a Binomial Sum)

We have already seen that

F(x, y) =
1

1 − x − y
=

∑
(i, j)∈N2

(
i + j

i

)
xiy j

for (x, y) in a neighbourhood of the origin. Since∑
(i, j)∈N2

(
i + j

i

)
|x |i |y | j =

∑
n≥0
(|x | + |y |)n =

1
1 − |x | − |y |

,

with convergence if and only if |x |+ |y | < 1, the domain of convergence of the power
series for F(x, y) at the origin is D = {(x, y) ∈ C2 : |x | + |y | < 1}. If |x | + |y | ≤ 1
and x + y = 1 then x and y must be real and positive, so the minimal singularities
of F(x, y) form the set S = {(x, 1 − x) : 0 ≤ x ≤ 1}.

The importance of minimal points will become clear in Chapter 5, when the
techniques of analytic combinatorics in several variables are discussed. Of particular
interest is the following property of minimal points, which helps determine minimal
singularities where a local analysis can yield coefficient asymptotics.

Definition 3.10 (logarithmic gradients) Given an analytic function f (z), the loga-
rithmic gradient of f is (∇log f )(z) =

(
z1 fz1, . . . , zd fzd

)
, where the subscripts indicate

partial derivatives.

Proposition 3.6 Let F(z) = G(z)/H(z) be a rational function which is analytic at the
origin with domain of convergenceD, where G and H are coprime polynomials over
the complex numbers. Then for any minimal point w there exists λ ∈ Rd

≥0 and τ ∈ C
such that (∇logH)(w) = τλ.

Proof If the partial derivative Hz j (w) is zero for all 1 ≤ j ≤ d then we can
take τ = 0 and the conclusion trivially holds. Thus we may assume, without loss
of generality, that the partial derivative Hzd (w) , 0. Proposition 3.1, the implicit
function theorem, implies the existence of an analytic function g(ẑ) = g(z1, . . . , zd−1)

in a neighbourhood N of ŵ in Cd−1 such that (ẑ, g(ẑ)) is a parameterization of the
singular setV = {z ∈ Cd : H(z) = 0} of F near w.

Fix any 1 ≤ j ≤ d − 1. Then for ẑ ∈ N one has H(ẑ, g(ẑ)) = 0, and differentiating
with respect to zj followed by substituting ẑ = ŵ yields
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Hz j (w) + gz j (ŵ)Hzd (w) = 0. (3.2)

Furthermore, taking zj = wjeiθ j with θ j real shows that the derivative of zd = g(ẑ)
with respect to θ j as zj moves around the circle with modulus |wj | is gθ j = iwjgz j (ŵ)
at θ j = 0. By minimality ofw the path of zd on this curve at θ j = 0must be tangent to
the circle {wdeiθd : −π ≤ θ ≤ π}, hence there exists λj ∈ R such that gθ j = −λj iwd .
Putting this together with (3.2) implies

−λj iwd = iwjgz j (ŵ) = −
iwjHz j (w)

Hzd (w)
,

and defining λd = 1 gives

λjwdHzd (w) = λdwjHz j (w),

as desired. If, instead of taking zj = wjeiθ j we take zj = wjex j for xj real then the
derivative of zd = g(ẑ) with respect to xj at xj = 0 is wjgz j (ŵ) = −λjwd . Since w is
minimal the modulus of zd cannot decrease when the modulus of zj decreases and
the other variables are held constant, meaning λjwd must have the same argument
as wd . Thus λj ≥ 0, and as 1 ≤ j ≤ d − 1 was arbitrary the conclusion holds. �

Remark 3.2 Our proof of Proposition 3.6 did not use the hypothesis that H is a
polynomial: if H(z) is any analytic function on a neighbourhood U of w ∈ Cd , and
no z ∈ U with H(z) = 0 has coordinate-wise smaller modulus than w, then the
conclusion of Proposition 3.6 still holds.

3.2 Diagonals

Since we use multivariate series as a data structure for enumeration problems, we
need ways of extracting univariate sequences from multivariate expansions.

Definition 3.11 (main diagonals) If F(z) =
∑

i∈Nd fizi is a (formal or convergent)
multivariate power series, the main diagonal of F(z) is the univariate power series

(∆F)(t) =
∑
n≥0

fn,...,ntn

defined by the terms of F where all variables have the same exponent.

If the variable appearing in the diagonal is not specified, then for notational conve-
nience we treat it as the final input variable to F. For instance, if F(x, y) is a bivariate
function then ∆F is by default treated as a series in the variable y.

Example 3.4 (Central Binomial Coefficients as a Diagonal)

The diagonal
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∆

(
1

1 − x − y

)
= ∆

©«
∑
(i, j)∈N2

(
i + j

i

)
xiy jª®¬ =

∑
n≥0

(
2n
n

)
yn

is the generating function of the central binomial coefficients.

Some of the most interesting applications of analytic combinatorics in several
variables, such as combinatorial limit theorems, come from linking the behaviours
of different univariate sequences defined by the same multivariate series.

Definition 3.12 (r-diagonals) Given r ∈ Qd
≥0 we define the r-diagonal of the se-

ries F(z) =
∑

i∈Nd fizi to be the univariate power series

(∆rF)(t) =
∑
n≥0

fnr1,...,nrd tn

whose coefficients form the sequence [znr]F(z), where fnr1,...,nrd is (for now) con-
sidered to be zero for nr < Nd . When F(z) is a function analytic in a neighbourhood
of the origin, the r-diagonal ∆rF is defined to be the r-diagonal of F’s power series
representation at the origin.

We always use the diagonal notation ∆ without a subscript to refer to the main
diagonal r = 1, which we give the most attention. By replacing variables by positive
integer powers of themselves, one can always reduce4 to the case r ∈ Nd . Although
the coefficient [znr]F(z) is not formally defined for nr < Nd , and never is when
r < Qd , we will see in later chapters that asymptotics of r-diagonals typically exhibit
uniform behaviour as r varies smoothly. This will allow us to make asymptotic
statements about r-diagonals for r having arbitrary real number coordinates.

We discuss many examples of rational diagonals in Section 3.4 below.

3.2.1 Properties of Diagonals

One of the key characteristics of the diagonal operator is how it interacts with the
various classes of generating functions discussed in Chapter 2. Our first result, con-
necting algebraic functions and bivariate rational diagonals, was known to Pólya [57]
in special cases and later proven by Furstenberg [33] and Hautus and Klarner [38].

Proposition 3.7 Suppose the rational function F(x, y) = G(x, y)/H(x, y) ∈ Q(x, y)
is analytic at the origin. Then (∆F)(y) is an algebraic function, obtained by adding
the residues of G(x,y/x)

xH(x,y/x) at its poles x1(y), . . . , xr (y) in x which are fractional power
series in y with no constant term (i.e., those which approach zero as y → 0).

4 For example, [xn/2yn]F(x, y) = [xnyn]F(x2, y) for any bivariate power series F(x, y).
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We give a complex analytic proof of Proposition 3.7; a generalization to series
over arbitrary fields is detailed in Stanley [61, Thm. 6.3.3].

Proof Suppose F(x, y) =
∑
(i, j)∈N2 fi, j xiy j converges in the polydisk |x | < R

and |y | < S for R, S > 0. Then for all fixed y with |y | < RS the series

x−1 F(x, y/x) =
∑
(i, j)∈N2

fi, j xi−j−1y j

converges absolutely and uniformly for all x in the annulus A |y | = {|y |/S < |x | < R}.
IfC |y | is a positively oriented circle around the origin staying in A |y | then the Cauchy
residue theorem implies

1
2πi

∫
C|y |

F(x, y/x)
x

dx =
∑
(i, j)∈N2

[
fi, j y j

1
2πi

∫
C|y |

xi−j−1 dx

]
=

∑
j≥0

fj, j y j = (∆F)(y),

where we may commute the integral and summation by uniform convergence, so

(∆F)(y) =
1

2πi

∫
C|y |

G(x, y/x)
xH(x, y/x)

dx =
r∑
i=1

Res
(

G(x, y/x)
xH(x, y/x)

; x = ρi(y)
)
,

where ρ1(y), . . . , ρr (y) are the poles of G(x, y/x)/xH(x, y/x) inside C |y | . Because
the upper radius of A |y | is fixed while the lower radius goes to zero with |y |, when |y |
is sufficiently small there is always a circle C |y | such that the only poles of F
inside C |y | are those that approach the origin as y goes to zero. Each of the poles is
algebraic, and thus so is each residue and their sum. �

Bostan et al. [15, Thm. 18] give tight bounds on the algebraic quantities involved.
Their results imply that if F(x, y) is a rational function whose numerator and de-
nominator have degrees at most δ in x and in y, then there is a polynomial P(t,D) of
degree at most d24δ+1 in t and degree at most 4δ in D such that P(t, (∆F)(t)) = 0. See
that paper for more precise bounds, and an algorithm to compute such a polynomial P
from F(x, y) using O(8δ) arithmetic operations with rational numbers.

Example 3.5 (The Algebraic Diagonal of a Binomial Sum)

The generating function C(y) of the central binomial coefficients is the diagonal of
the bivariate function F(x, y) = 1/(1− x − y). The power series expansion of F(x, y)
converges in the polydisk |x | < 1/2 and |y | < 1/2, and

x−1 F(x, y/x) =
∑
(i, j)∈N2

(
i + j

i

)
xi−1

( y
x

) j
converges absolutely and uniformly whenever |y | < 1/4 and 2|y | < |x | < 1/2. For
fixed y with |y | < 1/6 all points on the curve |x | = 3|y | satisfy 2|y | < |x | < 1/2, so
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C(y) = (∆F)(y) =
1

2πi

∫
|x |=3 |y |

1
x(1 − x − y/x)

dx =
1

2πi

∫
|x |=3 |y |

1
x − x2 − y

dx.

The denominator H(x, y) = x − x2 − y has roots

ρ±(y) =
1 ±

√
1 − 4y
2

,

where ρ−(y) → 0 and ρ+(y) → 1/2 as y → 0. Thus,

C(y) = Res
(

1
x − x2 − y

; x = ρ−(y)
)
=

1
1 − 2ρ−(y)

=
1√

1 − 4y

for y in a neighbourhood of the origin.

Over the rational numbers, or any field of characteristic zero, the diagonal of a
rational function in more than two variables need not be algebraic5.

Example 3.6 (Not All Rational Diagonals are Algebraic)
In Chapter 2 we saw that the function

D(z) = ∆

(
1

(1 − x − y)(1 − w − z)

)
= ∆


∑
i, j≥0

(
i + j

i

) (
k + n

n

)
xiy jwk zn

 =
∑
n≥0

(
2n
n

)2
zn

is transcendental by examining asymptotics of its coefficients. Problem 3.7 asks you
to prove that the trivariate function F(x, y, z) = 1/(1 − x − y − z) has transcendental
diagonal.

Although the rational diagonal in the last example is not algebraic, it is D-finite.
In the 1980s, Christol [22] proved that the diagonal of a rational function is always
D-finite. In fact, diagonals satisfy a stronger closure property.

Definition 3.13 (multivariate D-finite functions) Generalizing the univariate set-
ting, ifK is a field of characteristic zero then a power series or analytic function F(z)
is called D-finite over K if the K(z)-vector space generated by F(z) and its partial
derivatives is finite dimensional. Equivalently, F(z) is D-finite if for each variable zj

5Over a field of prime characteristic, the diagonals of rational [33] and even algebraic [26] functions
in any number of variables must be algebraic. There is a beautifully constructed elementary proof of
these results using a connection between diagonals, algebraic functions, and certain finite automata
taking as input base p expansions of natural numbers; see Lipshitz and Poorten [48] for a survey.
Adamczewski and Bell [2] give explicit bounds on the degree and height of the minimal polynomial
for the diagonal (∆F mod p) in terms of the prime p, the degree and height of the minimal
polynomial of F(z), and the number of variables.
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it satisfies a linear differential equation with coefficients in K[z] with respect to the
partial derivative ∂

∂z j
.

Even though the class of rational (or even algebraic) functions is not closed under
taking diagonals, the class of multivariate D-finite functions is closed under taking
diagonals.

Theorem 3.2 If f (z) is D-finite over a field K then the main diagonal ∆ f is also
D-finite over K.

See Lipshitz [47] for a proof of Theorem 3.2 using a clever argument enumerating
elements in finite-dimensional vector spaces.

An annihilating linear differential equation for the diagonal of a rational (or, more
generally, D-finite) function is obtained through the theory of creative telescoping.
If F(z) is a rational function whose numerator and denominator have their degree in
each variable bounded by δ, Lairez [45] gives an algorithm determining a D-finite
equation satisfied by∆F which runs in complexity δO(d). Bostan et al. [16, Thm. 4.2]
give a bound on the order and degree of this D-finite equation, both of which are also
in δO(d). Currently, the most efficient implementation of this creative telescoping
machinery for diagonals is a MAGMA package of Lairez [45]. Koutschan [43]
maintains a useful Mathematica package, HolonomicFunctions, which calculates an
annihilating D-finite equation for the diagonal of a multivariate D-finite function.

Example 3.7 (Creative Telescoping for Binomial Coefficients)

Above we saw that for y sufficiently small the diagonalG(y) of the function F(x, y) =
1/(1 − x − y) is given by the integral

G(y) =
1

2πi

∫
γ

1
x − x2 − y

dx,

where γ is a positively oriented circle close to the origin. Example 2.22 of Chapter 2
derived the differential equation (4y − 1)G′(y)+ 2G(y) = 0 for this integral using an
identity relating the derivatives of F with respect to x and with respect to y.

Theorem 3.2 restricts the possible asymptotic behaviour of rational diagonal
coefficients. Recall fromDefinition 2.25 inChapter 2 thatF(z) =

∑
n≥0 fnzn ∈ Q[[z]]

is called a G-function if fn and the least common denominator of f0, . . . , fn grow at
most exponentially with n. In fact, rational diagonals satisfy a stronger property.
Definition 3.14 (global boundedness) A univariate series F(z) ∈ Q[[z]] is called
globally bounded if F(z) represents an analytic function in a neighbourhood of the
origin and there exist non-zero a, b ∈ Q such that aF(bz) has integer coefficients.
Problem 3.4 asks you to prove that the diagonal of any rational function F(z) ∈ Q(z)
that is analytic at the origin is globally bounded, and that every globally bounded
function which is analytic at the origin is a G-function. Combining this with Corol-
lary 2.2 in Chapter 2, about the asymptotics of G-functions, then gives the following.
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Corollary 3.2 Suppose F(z) ∈ Q(z) is analytic at the origin. As n→∞ its diagonal
coefficient sequence [zn1 · · · z

n
d
]F(z) has an asymptotic expansion given by a sum of

terms of the form C nα ζn (log n)` , where C ∈ C, α ∈ Q, ` ∈ N, and ζ is algebraic.

Example 3.8 (A D-Finite Function which is not a Rational Diagonal)

The function f (z) = ez =
∑

n≥0 zn/n! is D-finite, but not globally bounded, so it is
not the diagonal of a rational function in any number of variables.

Although the results of this section were stated for the main diagonal ∆F, their
analogues hold for the r-diagonal ∆rF whenever r has rational coordinates. As pre-
viously mentioned, one can immediately reduce to the case r ∈ Nd by taking positive
integer powers of each variable. Then, the r-diagonal of a rational (respectively al-
gebraic or D-finite) function F(z) can be written as the main diagonal of a related
rational (respectively algebraic or D-finite) function. Problem 3.8 asks you to extend
the approach of the following example to the general case.

Example 3.9 (Reduction to Main Diagonal)

Consider the r = (2, 3) diagonal of the rational function

F(x, y) =
1

1 − x − y
=

∑
i, j≥0

(
i + j

i

)
xiy j .

Our first goal is to determine a series expression involving only even powers of x,
since these are the only terms which will appear in the r-diagonal. To find such a
series, we note that

F(−x, y) =
1

1 + x − y
=

∑
i, j≥0

(
i + j

i

)
(−1)i xiy j

so that

G(x, y) =
F(x, y) + F(−x, y)

2
=

1 − y

(1 − x − y)(1 + x − y)
=

∑
i, j≥0

(
1 + (−1)i

2

) (
i + j

i

)
xiy j

=
∑
i, j≥0

(
2i + j

2i

)
x2iy j .

Similarly, our next goal is to determine a series expression involving only the powers
of y in G(x, y) which are divisible by 3. If ω = e2i/3 is a primitive third root of unity
then 1 + ωk + ω2k = 0 for k an integer not divisible by 3 and 1 + ωk + ω2k = 3 if 3
divides k. Thus,
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H(x, y) =
G(x, y) + G(x, ωy) + G(x, ω2y)

3
=

∑
i, j≥0

(
1 + ω j + ω2j

3

) (
2i + j

2i

)
x2iy j

=
∑
i, j≥0

(
2i + 3 j

2i

)
x2iy3j,

and simplifying H(x, y) gives

1 − x2y3 + x4 − y3 − 2x2

1 − x6 + y6 − 6x2y3 + 3x4 − 2y3 − 3x2 =
∑
i, j≥0

(
2i + 3 j

2i

)
x2iy3j .

Now that we have an expression involving the terms which appear in the r-diagonal,
our final step is to convert to a rational function where these terms lie on the main
diagonal. Since x always appears to an even power, and y always appears to a power
divisible by 3, we can replace x2 by s and y3 by t to obtain

1 − st + s2 − t − 2s
1 − s3 + t2 − 6st + 3s2 − 2t − 3s

=
∑
i, j≥0

(
2i + 3 j

2i

)
sit j .

The main diagonal of this rational function is the r-diagonal of F(x, y).

The technique of multiplying power series variables by roots of unity and adding
the results to obtain a specific subseries is often referred to as a ‘root of unity filter’.
Although this process can always be followed to reduce an r-diagonal to the main
diagonal, the resulting function will typically be more complicated and harder to
analyze. We will see later in this book that the methods of analytic combinatorics
in several variables allow for asymptotic statements about r-diagonals by working
directly with r as a parameter, so such manipulations are not necessary.

3.2.2 Representing Series Using Diagonals

Since we develop methods to determine asymptotics of diagonal sequences, it is
natural to ask which functions can be represented by diagonals. First, we see that
any algebraic function can be written as the diagonal of a bivariate rational function,
meaning the classes of bivariate rational diagonals and algebraic functions are equal.

Proposition 3.8 Suppose P(z, y) ∈ Q[z, y] with partial derivative Py(0, 0) , 0. If
F ∈ Q[[z]] has no constant term and P(z, F(z)) = 0 then

F(z) = ∆

(
y2Py(zy, y)

P(zy, y)

)
;

i.e., F is the diagonal of a bivariate rational function.
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We follow the simple proof of Furstenberg [33], which works for power series
over any integral domain. Note that the restriction that F(z) vanish at the origin
is mild: if instead F(0) = a , 0 then the result can be applied to the function
G(z) = F(z) − a to obtain a rational function g(z, y) whose diagonal is G(z), and the
diagonal of g(z, y) + a is F(z). To work around the restriction that Py(0, 0) , 0 one
must separate the solutions of P(z, y) = 0 near the origin; see Problem 3.9 for an
approach suggested by Adamczewski and Bell [2].

Proof Writing P(z, y) = (y − F(z))u(z, y) for some u ∈ Q[[z]][y] we see

Py(z, y) = u(z, y) + (y − F(z))uy(z, y),

so that
y2Py(zy, y)

P(zy, y)
=

y2

y − F(zy)
+

y2uy(zy, y)
u(zy, y)

. (3.3)

Since F(z) has no constant term,

y2

y − F(zy)
=

y

1 − F(zy)/y
=

∑
k≥0

y1−kF(zy)k

is a power series whose diagonal is F(z). Because u(0, 0) = Py(0, 0) , 0, the second
summand in (3.3) is a power series, with a zero diagonal. Taking the diagonal
operator in (3.3) then gives the desired result. �

Example 3.10 (The Catalan Generating Function as a Rational Diagonal)

The Catalan generating function C(z) is the solution to zC(z)2 − C(z) + 1 = 0
withC(0) = 1. The function D(z) = C(z)−1 has D(0) = 0 and satisfies P(z,D(z)) = 0
where P(z, y) = z(y + 1)2 − (y + 1) + 1. Since Py(0, 0) = −1 , 0,

D(z) = ∆
(
y(2y2z + 2yz − 1)
y2z + 2yz + z − 1

)
and

C(z) = ∆
(
1 +

y(2y2z + 2yz − 1)
y2z + 2yz + z − 1

)
= ∆

(
2y3z + 3y2z + 2yz − y + z − 1

y2z + 2yz + z − 1

)
.

The following generalization of Proposition 3.8 follows from an analogous argu-
ment; see Problem 3.10.

Proposition 3.9 Let P(z, y) ∈ Q[z, y] and suppose F(z) is an analytic function at the
origin satisfying P(z, F(z)) = 0 and F(ẑ, 0) = 0. If P(z, y) = (y − F(z))ku(z, y) for
k ∈ N and u(z, y) analytic at the origin with u(0, 0) , 0, then
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[zi]F(z) = [ziyid ]
y2Py(ẑ, yzd, y)
kP(ẑ, yzd, y)

.

Denef and Lipshitz [27, Thm. 6.2] extend both Proposition 3.8 and Proposition 3.9
by proving that for any algebraic function F(z) in d variables there exists a rational
function R(z, y) in 2d variables such that [zi]F(z) = [ziyi]R(z, y) for all i ∈ Nd .
Safonov [59] gives an elementary argument that for any algebraic function F(z) in d
variables there exists a rational function R(z, y) in d + 1 variables and a unimodular
matrix A ∈ Nd×d such that if i ∈ Nd and j = Ai then [zi]F(z) = [zjy jd ]R(z, y).

Example 3.11 (Counting Leaves in Rooted Plane Trees)

A rooted plane tree is a (non-empty) rooted tree where every node is a leaf (has
no children) or has a finite sequence of children which are themselves non-empty
rooted plane trees. Problem 3.11 asks you to prove that the bivariate generating func-
tion T(u, z) = uz+uz2 + (u+u2)z3 + · · · whose coefficients tk,n = [uk zn]T(z, u) give
the number of rooted plane trees on n nodes with k leaves satisfies P(u, z,T(z, u)) = 0,
where

P(u, z, y) = y2 + (z − zu − 1)y + zu.

The conditions of Proposition 3.9 hold with k = 1, so

tk,n = [uk znyn]
y2Py(u, yz, y)

P(u, yz, y)
= [uk znyn]

y(uyz − yz − 2y + 1)
1 + uyz − uz − yz − y

.

In this case one can determine tk,n directly from the equation P(u, z,T) = 0 by a
clever application of Lagrange inversion (recall Problem 2.8 from Chapter 2). See
Flajolet and Sedgewick [28, Sect. III. 3] for further examples of this nature.

Example 3.12 (Counting Bar Graphs)

A bar graph is a finite connected union of 1 × 1 boxes with corners in Z2 such
that lowest edge in each column lies on the x-axis and each column contains all
boxes between its highest and lowest box; see Figure 3.1 for an example. An edge
between two vertices of Z2 is called an external edge of a bar graph if there is a
1 × 1 box in the bar graph containing the edge and a 1 × 1 box in Z2 not contained
in the bar graph which also contains the edge. If bn,k denotes the number of bar
graphs with 2n horizontal external edges and 2k vertical external edges (there are
always an even number of both) then Bousquet-Mélou and Rechnitzer [19] show that
the bivariate generating function B(x, y) =

∑
n,k≥0 bn,k xnyk satisfies B(0, 0) = 0

and P(x, y, B) = 0, where P(x, y, z) = z − xy − (x + y + xy)z + xz2. The conditions
of Proposition 3.9 are satisfied, so we obtain

bn,k = [xnyk zk]
z(1 − xyz − 2xz − yz − x)

1 − xyz − xy − xz − yz − x
.
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Fig. 3.1 A bar graph with 10 external vertical edges (coloured in gray) and 12 external horizontal
edges (coloured in black).

In Chapter 5 we use the methods of analytic combinatorics in several variables to
determine asymptotics of bn,k as n, k →∞.

The fact that any algebraic function can be represented as a bivariate diagonal has
asymptotic consequences. For instance, it follows from Proposition 2.11 in Chapter 2
that for any α ∈ Q \ {−1,−2, . . . } there exists a bivariate rational function whose
diagonal coefficient sequence has dominant asymptotics of the form Cnαρn for
constants C, ρ > 0. Using the methods developed in Chapter 5, for any negative
integer α one can construct a trivariate rational function whose main diagonal has
dominant asymptotic growth of the form Cnαρn for constants C, ρ > 0.

Although every rational diagonal is a D-finite globally bounded function, it is an
open question whether every globally bounded D-finite function can be written as a
rational diagonal. This question has been studied for decades.

Example 3.13 (Christol’s Open Question)

In 1986, Christol [23, p. 15] noted that the series

f (z) =
∑
n≥0

(1/9)n(4/9)n(5/9)n
(1/3)n(1)n

zn

n!
, (x)n = x(x + 1) · · · (x + n − 1)

a so-called 3F2 hypergeometric function, is globally bounded and D-finite6 but is not
easily expressed as the diagonal of a rational function. It is still openwhether f (z) can
be expressed as a rational diagonal. Bostan et al. [14] gave many additional examples
of globally bounded hypergeometric functions, some of which were expressed as
explicit rational diagonals by Abdelaziz et al. [1] and Bostan and Yurkevich [17].

6 The series f (z) satisfies the D-finite equation 729z2(z−1) f ′′′(z)+81z(37z−21) f ′′(z)+9(200z−
27) f ′(z) + 20 f (z) = 0.
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Conjecture 3.1 (Christol [24, Conjecture 4]) Every globally bounded D-finite func-
tion can be expressed as the main diagonal of a rational function.

It is also natural to wonder about the relationship between diagonals of rational
functions in differing numbers of variables. Given d ∈ N, let Dd denote the set
of functions which can be obtained as (main) diagonals of d-variate rational func-
tions over Q. If F(z) is any function analytic at the origin, the diagonals of F(z)
and G(z, t) = F(z1, . . . , zd−1, tzd) are equal, giving a sequence of containments
D1 ⊂ D2 ⊂ D3 ⊂ · · · . Because D1 contains univariate rational functions and D2
is the class of algebraic functions, we have strict containments D1 ( D2 ( D3, but
there is no natural criterion to separate Dd for d ≥ 3.

Open Problem 3.1 Does there exist d > 3 such that D3 , Dd?

Note that, even when the number of variables d is fixed, there are an infinite
number of ways to represent f ∈ Dd as a diagonal. Indeed, if f (z) = (∆F)(z) for
some rational function F(z) then f (z) = (∆G)(z) for any G(z) = F(z) + H(z)
with H(z) a rational function with zero diagonal. One may take, for instance,
H(z) = zdh(z1, . . . , zd−2, zd−1zd) where h(w1, . . . ,wd−1) is any (d − 1)-variate ra-
tional function that is analytic at the origin. As such representations can have very
different properties, characterizing all functions with the same diagonal is an im-
portant problem. This can be reduced to characterizing the rational functions with a
zero diagonal.

Open Problem 3.2 Give a useful characterization of the functions F(z) ∈ Q(z)
which are analytic at the origin and have zero diagonal.

The term ‘useful characterization’ in Open Problem 3.2 is intentionally vague:
the characterization should be sufficiently powerful to allow one to select the ‘best’
representative for a particular purpose, such as an asymptotic analysis. Note that
it is decidable to check whether two rational functions F(z) and G(z) have the
same diagonal. Creative telescoping algorithms determine an annihilating D-finite
equation satisfied by ∆(F − G), and this equation gives a finite bound N such that
the diagonals of F and G are equal if their first N power series coefficients agree.

Example 3.14 (Apéry’s Sequence)

We prove that the trivariate rational functions

F1(x, y, z) =
1

1 − (1 + z)(x + y − xy)

F2(x, y, z) =
1

1 − x − y − z(1 − x)(1 − y)

have the same diagonal sequence, whose asymptotic expansion is related to Apéry’s
approach to proving irrationality of the Riemann zeta function at integer arguments
(see Section 3.4 below for details). The Magma package of Lairez [45] shows
that (∆F1)(t) and (∆F2)(t) both satisfy the differential equation
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t(t2 + 11t − 1) f ′′(t) + (3t2 + 22t − 1) f ′(t) + (t + 3) f (t) = 0,

meaning both diagonal sequences satisfy the recurrence relation

(n + 2)2un+2 = (11n2 + 33n + 25)un+1 + (n + 1)2un.

Since the first two diagonal terms of F1 and F2 are equal, and they satisfy the same
recurrence relation of order 2, their diagonal sequences are identical (of course, their
non-diagonal power series coefficients are different).

3.3 Multivariate Laurent Expansions and Other Series
Operators

In our investigations it will be necessary to consider expansions (and diagonals) of
functions which cannot be represented by power series at the origin. Furthermore,
non-power series expansions of a rational function centred at the origin can help to
give insight into the computations arising in an asymptotic analysis, even when one
is only interested in power series expansions. Just as the analysis of an algebraic
function encoded by its minimal polynomial P must take into account the other roots
of P, our methods to determine asymptotics of a rational function F(z)will naturally
pick up properties of all valid series expansions of F at the origin.

Recall from Definition 2.9 in Chapter 2 that the ring of formal Laurent series over
the field K consists of all series with integer exponents bounded from below,

K((z)) =

{∑
i≥q

fizi : q ∈ Z, fi ∈ K

}
,

equipped with term-wise addition and the Cauchy product, while convergent Laurent
series can have an infinite number of terms with negative exponents. We make use
of a straightforward multivariate generalization.

Definition 3.15 (multivariate formal Laurent series) The field of formal iterated
Laurent series in the variables z is defined inductively as K((z)) = K((z1, . . . , zd)) =
K((z1, . . . , zd−1))((zd)).

Xin [67, Ch. 2] gives a detailed account of formal iterated Laurent series, and
proofs of their basic properties. Unlike multivariate power series, the ordering of the
variables matters in this construction.

Example 3.15 (Multivariate Laurent Expansions Depend on Variable Order)

In the field Q((x, y)) = Q((x))((y)), consisting of a Laurent series in y whose
coefficients are Laurent series in x, one can compute the formal expansion
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1
x + y

=
1/x

1 + y/x
=

∑
n≥0

(
(−1)nx−n−1

)
yn

for the multiplicative inverse of x + y. This does not lie inQ((y, x)) = Q((y))((x)), as
it contains terms with arbitrarily large negative exponents in x (note, however, that
the coefficient of any fixed power of y has only one term with a negative exponent
in x). Similarly, in Q((y, x)) one can compute the formal expansion

1
x + y

=
1/y

1 + x/y
=

∑
n≥0

(
(−1)ny−n−1

)
xn

which does not lie in Q((x, y)).

Because K((z)) forms a field, any rational function (or ratio of analytic functions)
has an expansion as an iterated Laurent series, making these formal series sufficient
for our purposes. Unfortunately, K((z)) is not closed under composition, even in the
univariate case: if f (z) = 1 + z + z2 + · · · then f (1/z) is not a well defined formal
Laurent series. With this in mind, we define an important subset of Laurent series.

Definition 3.16 (Laurent polynomials) For a variable z, we write z = 1/z and
z = (z1, . . . , zd). The ring of Laurent polynomials in the variables z, written K[z, z],
is the subset ofK((z)) consisting of elements with a finite number of non-zero terms.

Since a Laurent polynomial only contains a finite number of terms, if f (z) ∈ K[z, z]
and g ∈ K((z)) then f (g(z)) ∈ K((z)). Note also that the ring of Laurent polynomials
does not depend on the ordering of the variables used to construct it.

Example 3.16 (A Multivariate Walk Generating Function)

The ring Q[x, x][[t]] consists of power series in t whose coefficients are Laurent
polynomials in x. For instance, in Q[x, x][[t]] one has the expansion

1
1 − t(x + x)

=
∑
n≥0
(x + x)ntn =

∑
n≥0

(
n∑

k=0

(
n
k

)
x2k−n

)
tn. (3.4)

This series has a natural interpretation as the multivariate generating function of
walks on the integer lattice Z that begin at the origin and take steps in {−1, 1}, where
the exponent of x marks the endpoint of a walk and the exponent of t marks the
number of steps it contains. That the coefficient of tn is a Laurent polynomial for
each n reflects the fact that a walk taking n steps from {−1, 1} can only end at a finite
number of coordinates. Note that for any f ∈ Q((z)), we can substitute x = f (z) into
both sides of (3.4) and still have a valid equality among elements of Q((z))[[t]].

Aparicio-Monforte and Kauers [4] discuss constructions of other, more general,
rings of formal Laurent series.
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3.3.1 Convergent Laurent Series and Amoebas

As usual, we mainly restrict our attention to series representing analytic functions.

Definition 3.17 (multivariate convergent Laurent series)Given domainD ⊂ Cd ,
the set CD{z} of convergent Laurent series on D (centred at the origin) consists of
series

∑
i∈Zd fizi with fi ∈ C which are absolutely convergent at each point ofD and

uniformly convergent on compact subsets of D.

We always consider convergent Laurent expansions centred at the origin. The char-
acterization of multivariate power series domains of convergence discussed above,
as well as the Cauchy integral formula, can be extended to convergent Laurent series.
Recall the Relog map

Relog(z) = (log |z1 |, log |z2 |, . . . , log |zd |) .

Given x ∈ Rd , the inverse image Relog−1(x) of x under Relog is the polytorus T(ex)
of radius ex = (ex1, . . . , exd ). A proof of the following classical result can be found
in Pemantle and Wilson [55, Thm. 7.2.2].

Proposition 3.10 The domain of convergence of the series F(z) =
∑

i∈Zd fizi has
the form D = Relog−1(B) for some (possibly empty) open convex subset B ⊂ Rd ,
and F defines an analytic function on D. Conversely, if f (z) is an analytic function
on D = Relog−1(B) with B ⊂ Rd open and convex then there exists a unique
series F(z) =

∑
i∈Zd cizi ∈ CD{z} converging to f , whose coefficients are given by

ci =
1
(2πi)d

∫
Relog−1(x)

f (z)
zi+1 dz (3.5)

for any x ∈ B.

The set of formal expressions
∑

i∈Zd fizi does not have a natural ring structure,
which is why we restrict ourselves to iterated Laurent series in the formal case. The
set CD{z} is, however, a ring when addition is defined term-wise and the multiplica-
tion of elements F,G ∈ CD{z} representing analytic functions f (z) and g(z) on D
is defined as the unique element of CD{z} converging to the product f (z)g(z); the
coefficients of this product can be determined using (3.5).

Amoebas of Laurent Polynomials

There is a nice characterization of the convergent Laurent expansions of a rational
function, using an interesting construction from algebraic geometry.

Definition 3.18 (amoebas and their complements) Given a Laurent polyno-
mial f (z) ∈ C[z, z], the amoeba of f is the set
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Fig. 3.2 Left: The amoeba of H(x, y) = 1− x − y, whose complement in R2 contains three convex
connected components corresponding to convergent Laurent expansions in three domains D1, D2,
and D3, pictured with the recession cones of those components. Right: The Newton polygon of
H(x, y), together with the dual cones at each vertex.

amoeba( f ) =
{
Relog(z) : z ∈ Cd∗ , f (z) = 0

}
⊂ Rd,

where C∗ = C \ {0}. The amoeba’s complement is amoeba( f )c = Rd \ amoeba( f ).

Amoebas were introduced to the study of algebraic varieties by Bergman [12], and
popularized through the work of Gelfand, Kapranov, and Zelevinsky [35] (who
coined the term amoeba as two dimensional amoebas in the plane resemble cellular
amoebas with tentacles going off to infinity; see Figure 3.2). The following result,
proven in Gelfand, Kapranov, and Zelevinsky [35, Cor. 1.6], shows the connection
between amoebas and convergent Laurent expansions.

Proposition 3.11 If f (z) is a Laurent polynomial then all connected components of
the complement amoeba( f )c are convex subsets of Rd . These real convex subsets
are in bijection with the Laurent series expansions of the rational function 1/ f (z).
When 1/ f (z) has a power series expansion, then it corresponds to the component
of Rd \ amoeba( f ) containing all points (−N, . . . ,−N) for N sufficiently large.

Although the introduction of amoebas can seem artificial at first glance, it is
actually quite natural. In order to picture the zero set of f , which lives in the extremely
hard to visualize space Cd , one takes the absolute value of each coordinate to work
over the real numbers. Then, because domains of convergence of Laurent series
are logarithmically convex, coordinate-wise logarithms are taken. Amoebas thus
represent the ‘real shadow’ of a complex set, and an understanding of amoebas is
crucial to get a good visual picture for power series domains of convergence, singular
sets, minimal singularities, and other objects arising in analytic combinatorics in
several variables.

Example 3.17 (A Prototypical Amoeba)

The amoeba of H(x, y) = 1 − x − y is drawn in Figure 3.2. As R2 \ amoeba(H)
has three connected components, there are three convergent Laurent expansions
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of F(x, y) = 1/(1 − x − y), which converge on three disjoint domains in C2. In
addition to the power series expansion

1
1 − x − y

=
∑
i, j≥0

(
i + j

i

)
xiy j,

the binomial theorem implies

1
1 − x − y

=
−1/x

1 − (1 − y)/x
= −

∑
i≥0
(1 − y)i x−i−1 =

∑
i, j≥0

(
i
j

)
(−1)j+1y j x−i−1

and

1
1 − x − y

=
−1/y

1 − (1 − x)/y
= −

∑
i≥0
(1 − x)iy−i−1 =

∑
i, j≥0

(
i
j

)
(−1)j+1x j y−i−1,

when these series absolutely converge. We have already seen that the power series
expansion converges on D1 = {(x, y) : |x | + |y | < 1}, and to find the domains of
convergence of the Laurent expansions we note∑

i, j≥0

(
i
j

)
|y | j |x |−i−1 =

1/|x |
1 − (1 + |y |)/|x |

on D2 = {(x, y) : 1 + |y | < |x |}, with divergence outside the closure of D2, and∑
i, j≥0

(
i
j

)
|x | j |y |−i−1 =

1/|y |
1 − (1 + |x |)/|y |

on D3 = {(x, y) : 1 + |x | < |y |}, with divergence outside the closure of D3. Thus,
we have found the three convergent Laurent series expansions of F(x, y), valid on
the domains D1,D2, and D3.

Definition 3.19 (minimal points) As for power series expansions, a singularity of
a rational (or, more generally, meromorphic) function F(z) which is on the bound-
ary ∂D of the domain of convergence of one of its convergent Laurent series
expansions is called a minimal singularity or minimal point with respect to that
expansion.

Properties of Amoebas

When F(z) = G(z)/H(z) is a rational function with G and H coprime, the con-
vergent Laurent expansions of F are determined by the connected components



118 3 Multivariate Series and Diagonals

of Rd \ amoeba(H). We now summarize some important properties of amoebas,
which help visualize zero sets of multivariate polynomials and properties of Laurent
expansions.

1. The Newton Polytope and Amoebas. To state our first collection of results we
need a few definitions from the study of convex sets.

Definition 3.20 (definitions from convex analysis)

• The support S( f ) ⊂ Zd of a Laurent polynomial f (z) is the finite set of vec-
tors i ∈ Zd appearing as exponents to monomials zi in f ;

• the Newton polytope N( f ) ⊂ Rd of f is the convex hull of its support S( f ), the
smallest convex set in Rd containing S( f );

• a vertex ofN( f ) is a point inN( f ) which does not lie strictly between two other
points of the set, also known as an extreme point;

• the dual cone to a convex set S ⊂ Rd at a point v ∈ S is the set of vectors x ∈ Rd
such that x · v ≥ x · s for all s ∈ S;

• the recession cone of a convex set B ⊂ Rd is the set of vectors x ∈ Rd such
that x + b ∈ B for all b ∈ B.

See Figure 3.2 and our examples below for an illustration of these concepts. The
following result links the Laurent expansions of a rational function G(z)/H(z) and
integer points in the Newton polytope N(H).

Proposition 3.12 Let H ∈ C[z, z] be a Laurent polynomial and B = {B1, . . . , Br } be
the connected components of Rd \ amoeba(H). Then

1) there exists an injective mapping ν from B to the integer points ofN(H), meaning
each connected component of the amoeba complement can be identified with an
integer point in the Newton polytope;

2) each vertex ofN(H) has a preimage under ν, meaning the number of components
in the amoeba complement (and thus Laurent expansions of 1/H) is at least the
number of vertices of N(H) and at most the number of integer points in N(H);

3) if component B ∈ B is the image of v ∈ N(H) under ν, then the dual cone toN(H)
at v equals the recession cone of B.

See Forsberg et al. [29] for a proof. Proposition 3.12 allows one to easily com-
pute important information about the amoeba of H(z) directly from the polynomial.
In particular, each vertex of the Newton polygon corresponds to a component of
the amoeba complement which is unbounded. An integer point v of the Newton
polygon N that is not a vertex may or may not correspond to a component of the
complement; when v is an interior point of N it will correspond to a bounded com-
ponent of the amoeba complement (if any), and when v is on the boundary of N it
will correspond to an unbounded component of the amoeba complement (if any).
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2. Amoeba Boundaries and Contours. Suppose D is the domain of convergence
of a Laurent expansion of rational F(z) = G(z)/H(z). As in the power series case,
if w ∈ ∂D then there is a singularity of F, necessarily minimal, with the same
coordinate-wise modulus as w. Note that minimal singularities are precisely those
which map to the boundary of amoeba(H) under the Relog map.

Proposition 3.13 Let F(z) = G(z)/H(z) be a rational function, where G and H
are coprime polynomials over C, and let V denote the singularities of F (which
form the roots of H in Cd). Then for any point w ∈ ∂D ∩ V there exists λ ∈ Rd
and τ ∈ C such that (∇logH)(w) = τλ. Suppose B is a component of amoeba(H)c
with Relog(w) ∈ ∂B. If τ , 0 and w has no zero coordinate, then the hyperplane

Sw = {z ∈ Rd : (z − Relog(w)) · λ = 0}

is a support hyperplane to B (all points of B lie on one side of Sw).

See Figure 3.3 for a visualization.

Proof Existence of λ and τ follows from the same proof as Proposition 3.6, which is
Proposition 3.13 restricted to power series. For the claim about support hyperplanes,
writewj = ea j for some aj = log(wj) ∈ C. If H̃(x) = H(ex1, . . . , exd ) then (∇H̃)(a) =
(∇logH)(w) = τλ and Taylor’s theorem implies that the zero set of H̃(x) near a is, up
to first order approximation, the hyperplane {z ∈ Cd : (z − a) · λ = 0}. The second
statement then holds because λ has real coordinates, each connected component of
amoeba(H)c is convex, and amoeba(H) is the real part of the zero set of H̃. �

Drawing an amoeba, or its boundary, can be a difficult task7, and approximation
methods are prevalent. Luckily, Proposition 3.13 allows for a natural parameterization
of a superset of an amoeba boundary.

Definition 3.21 (amoeba contours) Let C(H) denote the points z ∈ Cd∗ such
that H(z) = 0 and (∇logH)(z) is a scalar multiple of a vector in Rd . The image
of C(H) under the Relog map is called the contour of the amoeba of H.

Corollary 3.3 Let H ∈ C[z, z] be a Laurent polynomial. Then the amoeba boundary
satisfies

∂ amoeba(H) ⊂ {Relog(z) : z ∈ C(H)} ⊂ amoeba(H).

In two dimensions, the contour can be parametrized by a real variable t by solving

xHx(x, y) − tyHy(x, y) = 0, H(x, y) = 0

for all complex values of x and y in terms of t, and then taking (log |x |, log |y |). Corol-
lary 3.3 was originally given by Mikhalkin [51], and the contour was investigated as

7 Even determining whether a univariate polynomial with integer coefficients has a root of modulus
one, the univariate version of this problem, is NP-hard with respect to the bitsize of the input
polynomial coefficients [56].
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Fig. 3.3 Left: The contour of H(x, y) = 1− x − y, parametrized by
(
log

�� t
1+t

�� , log
�� 1
1+t

��) for t ∈ R.
Right: The logarithmic gradients (∇logH)(w) form the normals to support hyperplanes of B at
minimal points w ∈ ∂D ∩ V.

a tool for computationally drawing amoebas by Theobald [64]. Other approximation
methods for amoeba boundaries and contours have been studied in [58, 8, 65, 30].

Example 3.18 (A Prototypical Contour)

The contour of H(x, y) = 1 − x − y, shown in Figure 3.3, is determined by solving

−x + ty = 1 − x − y = 0

for x and y, and then taking the Relog map, giving the real parameterization{(
log

��� t
1 + t

��� , log
���� 1
1 + t

����) : t ∈ R
}
.

In this case, the contour is the boundary of amoeba(H).

Example 3.19 (Sketching a Contour)

Figure 3.4 shows points on the contour of the degree four polynomial Q(x, y) =
1 − x − y − 6xy − x2y2, together with its Newton polygon N(Q). Four unbounded
components of the amoeba complement are visible, corresponding to the four vertices
ofN(Q). Furthermore, the contour suggests that theremight be a bounded component
of the amoeba complement containing the origin, corresponding to the interior
integer point of N(Q).

To see that the origin is not contained in the amoeba, we must show that there is
no root of Q with |x | = |y | = 1. In order to algebraically test conditions involving
the moduli of coordinates, we must work with variables taking real values. If
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Fig. 3.4 Left: Points on the contour ofQ(x, y) = 1− x − y − 6xy − x2y2, obtained by numerically
solving xQx − tyQy = Q = 0 for t incremented by 0.01 between −5 and 5 and taking the Relog
map. Right: The Newton polytope of Q(x, y).

Q(a + ib, c + id) = QR(a, b, c, d) + i QI (a, b, c, d)

for polynomials QR and QI with real coefficients, then the polynomial Q admits a
root with |x | = |y | = 1 if and only if the system

QR(a, b, c, d) = QI (a, b, c, d) = a2 + b2 − 1 = c2 + d2 − 1 = 0

has a solution (a, b, c, d) ∈ R4. Using a computer algebra package to solve this system
shows there is no solution with b or d taking real values.

To conclude that there is a bounded component of the amoeba complement, it is
now sufficient to prove that the origin is not contained in any of the four unbounded
components of the complement. Using convexity, this can be accomplished by ex-
hibiting points in the amoeba on line segments from the origin to each unbounded
component. Such points can be seen directly in Figure 3.4: although points on the
contour of Q are not always on the amoeba boundary, they always lie in the amoeba.
In Chapter 5 we will see how to easily determine points with explicit algebraic co-
ordinates between the origin and the unbounded components using so-called critical
points arising in an asymptotic analysis of r-diagonals for different directions r.

3. Amoeba Limit Directions. Finally, we examine how an amoeba goes to infinity.

Definition 3.22 (limit directions of amoebas) A vector v ∈ Rd is called a limit
direction of amoeba(H) if there exists x ∈ Rd such that x + tv ∈ amoeba(H) for
all t ≥ 0.
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Problem 3.14 asks you to prove that if v is a limit direction of amoeba(H) then there
exist distinct vectors n and m inN(H) such that v ·n = v ·m ≥ v ·k for all k ∈ N(H).
Pictorially, when v is a limit direction of amoeba(H) then there exists a hyperplane
in Rd with normal v such that all points of N(H) lie to one side of the hyperplane
and at least two elements of N(H) lie on the hyperplane.

Limit directions of amoebas help rule out pathological cases for asymptotic anal-
yses. In particular, determining asymptotics of the r-diagonal of F(z) = G(z)/H(z)
can be difficult when amoeba(H) contains a limit direction orthogonal to r.

Example 3.20 (Amoeba Limit Directions)

The amoeba of the polynomialT(x, y) = 1− x− xy has a limit direction (−1, 1)which
is orthogonal to the main diagonal direction (1, 1). Expanding 1/T(x, y) as a power
series using the binomial formula shows that the diagonal coefficient sequence is the
trivial sequence (1, 1, 1, . . . ).

3.3.2 Diagonals and Non-Negative Extractions of Laurent Series

Let F(z) =
∑

i∈Zd fizi be a formal or convergent Laurent series, where fi is zero for
enough indices i ∈ Zd to make F well defined in the formal case.

Definition 3.23 (diagonals of Laurent expansions) The r-diagonal of F for r ∈ Qd

is the univariate series
(∆rF)(t) =

∑
n≥0

fnrtn,

where fnr = 0 if nr < Zd . We still reserve ∆F for the main diagonal r = 1.

Given a function f (z) over the complex numbers, the diagonal ∆ f can only be
defined after specifying which Laurent expansion of f (z) is under consideration; by
Proposition 3.10 this can be done by specifying a point in the domain of convergence
of the Laurent expansion. Unless explicitly noted, when given a function analytic at
the origin we always consider the power series expansion of the function.

Most results discussed above for diagonals of power series expansions of ratio-
nal functions hold for convergent Laurent series expansions of rational functions.
In particular, diagonals of convergent Laurent series with integer coefficients are
G-functions, with the corresponding restrictions on asymptotic growth. Proposi-
tion 3.10 implies that for r ∈ Zd the r-diagonal of a convergent Laurent expansion
of the rational function F = G/H corresponding to a component B ⊂ amoeba(H)c
can be represented as
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Fig. 3.5 Left: Points on the contour of R(x, y) = 1− x−y− xy3. Right: The Newton polygon of R;
the non-vertex integer points (shaded gray) do not correspond to convergent Laurent expansions.

(∆rF)(t) =
∑
n≥0

fnrtn =
∑
n≥0

(
1
(2πi)d

∫
Relog−1(x)

F(z)
zr1n
1 · · · z

rdn
d

dz
z1 · · · zd

)
tn

=
1
(2πi)d

∫
Relog−1(x)

∑
n≥0

tn F(z)
(zr1

1 · · · z
rd
d
)n

dz
z1 · · · zd

=
1
(2πi)d

∫
Relog−1(x)

zr−1F(z)
zr − t

dz,

for any x ∈ B and |t | < er·x. Using this common representation, a D-finite equation
satisfied by the r-diagonals of all convergent Laurent expansions of G(z)/H(z) can
be computed by the creative telescoping algorithm of Lairez [45].

Example 3.21 (Diagonals and Multiple Laurent Expansions)

The contour of R(x, y) = 1 − x − y − xy3 is shown in Figure 3.5; the amoeba
complement amoeba(R)c has four components, corresponding to four8 convergent
Laurent expansions of 1/R. Using the creative telescoping package of Lairez, we
can compute the D-finite equation

(9t2 + 6t − 1)(27t4 + 18t2 − 1) f ′′(t) + 6(162t5 + 135t4 + 36t2 − 6t + 1) f ′(t)

+ 6(81t4 + 81t3 − 27t2 − 3t − 4) f (t) = 0

8 Although it appears there may be an additional component containing the origin, this can be ruled
out, for instance since R(1, i) = 0 and (1, i)maps to the origin under the Relog map. This illustrates
that the contour is a subset of the amoeba boundary.
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satisfied by the main diagonal of any convergent Laurent expansion of 1/R,

f (t) =
1
(2πi)2

∫
Γ

dx dy(
1 − x − y − xy3) (xy − t)

with Γ = Relog(a, b) for some (a, b) ∈ amoeba(R)c . This can be converted into an
order 6 P-recursive equation satisfied by each diagonal sequence dn = [tn] f (t),

(n + 6)(n + 5)dn+6 + · · · + 243(n + 1)(n + 2)dn = 0,

and, in this instance, even solved in a computer algebra system to get a general
solution (as expected with bivariate diagonals, it is a sum of algebraic functions).
Taking a power series expansion at the origin shows that the diagonal sequence of
this (power series) expansion of F begins 1, 2, 6, 23, 90, 357, . . . , and these initial
terms and the recurrence they satisfy uniquely specify the power series diagonal.

We now turn to the convergent Laurent expansion corresponding to the ver-
tex (0, 1) in the Newton polygon of R. Note

F(x, y) =
−1/y

1 −
(
1 − x − xy3) /y = −1

y

∑
k≥0

(
1 − x − xy3

)k
y−k (3.6)

with absolute convergence (at least) whenever 1 + |x | + |xy3 | < |y |; for example,
when |x | = 1/16 and |y | = 2. Expanding

(
(1 − x) − xy3)k y−k−1 using the binomial

theorem shows it contains only monomials of the form

xk−a+by2k−3a−1, 0 ≤ a ≤ k, 0 ≤ b ≤ a.

If k − a + b = 2k − 3a − 1 then 0 ≤ k − 2a − 1 ≤ a, so the exponents of terms
appearing on the diagonal are at least 2k−3a−1 ≥ (k+1)/2. Thus, the initial 2N−1
terms of the series in (3.6) may be summed to determine the initial N terms of its
diagonal sequence. In particular, the diagonal sequence of this (Laurent) expansion
of F begins 0, 1,−3, 10,−39, 156, . . . , and these initial terms and the recurrence they
satisfy uniquely specify this diagonal.

Problem 3.15 asks you to prove that the diagonal sequences of the two other
convergent Laurent expansions of F are identically zero, which can be accomplished
by computing initial terms of each sequence and using the above recurrence. In
Chapter 5 we will see an easy asymptotic argument, not relying on the calculation of
any recurrence, which shows that these final two diagonals must be eventually zero.

We end this section by describing another operation on Laurent series which is
used extensively in lattice path enumeration.

Definition 3.24 (non-negative series extraction)Given a fieldK and a power series
in t whose coefficients are formal iterated Laurent series in K,
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F(z, t) =
∑
k≥0

(∑
i∈Zd

fi,kzi

)
tk ∈ K((z))[[t]],

the non-negative series extraction operator
[
z≥0
1 · · · z

≥0
d

]
takes F(z, t) and returns the

power series

[
z≥0
1 · · · z

≥0
d

]
F(z, t) =

∑
k≥0

( ∑
i∈Nd

fi,kzi

)
tk =

∑
(k,i)∈Nd+1

fi,kzitk ∈ K[[z, t]]

defined by taking only those terms with positive exponents in the z variables. The
non-negative series extraction of a function F(z, t) having a convergent (instead of
formal) Laurent series expansion which is a power series in the t variable is defined
analogously.

Recall that the formal Laurent series ring K((z)) implicitly comes with an ordering
of the variables, and even though the image of F(z, t) under

[
z≥0
1 · · · z

≥0
d

]
is a

power series it may depend on the underlying ordering. When F(z, t) ∈ K[z, z][[t]]
is a power series in t whose coefficients are Laurent polynomials in z, the image
of F(z, t) under

[
z≥0
1 · · · z

≥0
d

]
is independent of how the variables are ordered.

Certain variants of the kernel method for lattice path enumeration, described in
Chapter 4, rely heavily on generating function representations using non-negative
series extractions of rational functions. The following result gives a relationship
between evaluations of a multivariate function encoded as the non-negative series
extraction of a Laurent series and a diagonal extraction.

Proposition 3.14 Let F(z, t) ∈ K[z, z][[t]]. Then for a ∈ {0, 1}d ,[
z≥0
1 · · · z

≥0
d

]
F(z, t)

���
z=a
= ∆

(
F(z1, . . . , zd, z1 · · · zdt)
(1 − z1)a1 · · · (1 − zd)ad

)
. (3.7)

The left hand side of (3.7) refers to first taking the non-negative extraction of F(z, t)
and then substituting z = a. When G(z, t) =

[
z≥0
1 · · · z

≥0
d

]
F(z, t) is a multivariate

generating function tracking parameters in some combinatorial class, setting zj = 0
in G corresponds to counting objects where the jth parameter is 0, while setting
zj = 1 corresponds to counting objects where the jth parameter can take any value.
Note that the specialization on the left hand side of (3.7), and the substitution on its
right-hand side, are well defined as each coefficient of F(z, t) with respect to t is a
Laurent polynomial.

We prove Proposition 3.14 after an example.

Example 3.22 (A Constant Term Extraction using Diagonals)

Let
F(x, t) =

1
1 − t(x + x)

=
∑
n≥0
(x + x)ntn ∈ Q[x, x][[t]].
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We have seen above that the coefficient [xitn]F(x, t) for (i, n) ∈ Z × N counts the
number of walks taking n steps in {−1, 1} which begin at the origin and end at the
point x = i. Thus, Proposition 3.14 implies

∆

(
1

1 − t(1 + x2)

)
= ∆F(x, xt) =

[
x≥0] F(x, t)

���
x=0

counts the number of walks on n steps which begin and end at the origin (note one
cannot just substitute x = 0 directly into the series for F(x, t) as it contains terms
with negative exponents in x), while

∆

(
F(x, xt)
(1 − x)

)
= ∆

(
1

(1 − x)(1 − t(1 + x2))

)
=

[
x≥0] F(x, t)

���
x=1

counts the number of walks on n steps beginning at the origin and ending at any point
x ≥ 0. As diagonals of bivariate functions these generating functions are algebraic,
and annihilating polynomials can be found using Proposition 3.7.

Any walk beginning and ending at the origin must have even length 2n and consist
of n steps +1 and n steps −1, showing combinatorially that

∆

(
1

1 − t(1 + x2)

)
=

∑
n≥0

(
2n
n

)
t2n = (1 − 4t2)−1/2.

Proof (of Proposition 3.14) The right hand side of Equation (3.7) is given by

∆

[(∑
k≥0

zk1

)a1

· · ·

(∑
k≥0

zkd

)ad
(∑
k≥0

(∑
i∈Zn

fi,k zk−i11 · · · zk−id
d

)
tk

)]

= ∆


∑
k≥0

©«
∑
j∈Nd

∑
i∈Zd

fi,k za1 j1−i1
1 · · · zad jd−id

d

ª®¬ (z1 · · · zdt)k
 ,

where these manipulations are valid because enough coefficients fi,k are zero to
make F(z, t) a power series in t whose coefficients are Laurent polynomials in z.
If aj = 0 for all 1 ≤ j ≤ d then each ij = 0 in the inner sum for any term on the
diagonal. If, however, aj = 1 then any terms with ij non-negative in the inner sum
lie on the diagonal. Evaluating the non-negative series extraction at zj = 0 removes
all terms with positive powers of zj , while evaluating at zj = 1 sums all coefficients
with non-negative powers of zj . �
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3.4 Sources of Rational Diagonals

In order to further motivate the study of rational diagonals, and their asymptotics, we
end this Chapter by describing several domains of mathematics where they naturally
appear. Examples discussed here will be analyzed throughout Parts II and III of
this text. Additionally, the theory of lattice path enumeration, our main domain of
application, is described in Chapters 4, 6, and 10.

3.4.1 Binomial Sums

Given a rational function F(z) which is analytic at the origin, the binomial theorem
implies that the power series coefficients of F can be represented as a sum of binomial
coefficients. In fact, the converse is also true, although we need a bit of notation to
state the formal result.

Definition 3.25 (rational binomial sums) An integer indexed sequence of dimen-
sion d is a map u : Zd → Q. Any such sequence ui1,...,is of dimension s < d can be
viewed as a sequence of dimension d by defining ui1,...,id = ui1,...,is , and with this
identification one may add and multiply integer indexed sequences of any dimension
term by term. The class of rational binomial sums is the smallest Q-algebra of inte-
ger indexed sequences (closed under term by term addition and multiplication, and
multiplication by rational numbers) which

• contains the univariate Kronecker delta sequence defined by δn = 1 if n = 0
and δn = 0 otherwise;

• contains all geometric sequences gn = Cn for non-zero C ∈ Q;

• contains the bivariate binomial coefficient sequence bn,k =
(n
k

)
, defined to be zero

whenever k < 0;

• is closed under affine maps on sequence indices;

• is closed under indefinite summation: whenever ui,k is a binomial sum then so is

si,m =


∑m

k=0 ui,k : m ≥ 0
0 : m = −1
−

∑−1
k=m+1 ui,k : m < −1

We are typically interested in sequences when their indices have non-negative
values, in which case si,m is defined by regular summation of ui,k .

Example 3.23 (Building a Binomial Sum)

Since bn,k =
(n
k

)
is a binomial sum and the class of binomial sums is closed under

affine maps on indices, bn+k,k =
(n+k

k

)
is a binomial sum. The sequence σn which
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is one when n ≥ 0 and zero otherwise is the indefinite summation of the Kronecker
delta sequence, and thus is a binomial sum. Since the class of binomial sums is
closed under multiplication, this implies σn

(n+k
k

)2 (n
k

)2 is a binomial sum. Finally,
since the class of binomial sums is closed under summation, the sequence an which
is zero if n < 0 and

an =
n∑

k=0

(
n
k

)2 (n + k
k

)2

for n ≥ 0 is a binomial sum.

The class of univariate binomial sums supported on the natural numbers is exactly
the class of diagonal sequences of rational functions.

Proposition 3.15 A univariate sequence (un), zero whenever n < 0, is a rational
binomial sum if and only if the generating function U(z) =

∑
n≥0 unzn is the main

power series diagonal of a rational function over Q which is analytic at the origin.

A proof of Proposition 3.15 can be found in Bostan et al. [16, Thm. 3.5], and a
Maple package of Lairez9 allows one to determine a rational diagonal expression
for a given binomial sum. Binomial sums appear in several areas of mathematics,
especially number theory.

Example 3.24 (Apéry Numbers as Diagonals)

Apéry [5] proved that the constant ζ(3) =
∑∞

n=1
1
n3 was irrational–an open result

for hundreds of years–by constructing two sequences of rational numbers whose
ratios converge to ζ(3) at a rate which implies that ζ(3) is irrational. Alfred van der
Poorten’s canonical report [66] on the proof gives the following exercise: “Be the first
on your block to prove by a 2-line argument that ζ(3) is irrational” by determining an
algebraic relationship between the two sequences and determining the exponential
growth of the binomial sum sequence

an =
n∑

k=0

(
n
k

)2 (n + k
k

)2
.

The integers an are often referred to as the Apéry numbers (see the Online Encyclo-
pedia of Integer Sequences entry A005259) and the Maple package of Lairez shows
that their generating function satisfies

A(z) = ∆
(

1
1 − t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

)
.

9 TheMaple package of Lairez, available at https://github.com/lairez/binomsums, contains
the command sumtores which returns a rational function R(y, z) ∈ Q(y, z) such that the binomial
sum under consideration is the main power series diagonal of y1 · · · ydR(y, y1y2 · · · ydz).

https://oeis.org/A005259
https://github.com/lairez/binomsums
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In his seminal paper proving diagonals of rational functions areD-finite, Christol [22]
gave two diagonal expressions for the Apéry numbers; Bostan et al. [14, Appendix B]
list four additional rational diagonal expressions for the generating function of an (two
containing 5 variables, one containing 6 variables, and one containing 8 variables,
none of which is the representation given here). The singular sets of these rational
functions exhibit somewhat different behaviours, with our first set of asymptotic
methods in Chapter 5 applying to some, and the others needing the more refined
methods of Chapter 9.

Apéry also presented a novel proof of the irrationality of ζ(2) which relies on
asymptotics of the binomial sum sequence

cn =
n∑

k=0

(
n
k

)2 (n + k
k

)
.

The cn are also referred to as Apéry numbers (OEIS entry A005258). Apéry himself
noted [6] that the generating function C(z) of (cn) is the diagonal of two trivariate
rational functions

C(z) = ∆
(

1
1 − (1 + z)(x + y − xy)

)
= ∆

(
1

1 − x − y − z(1 − x)(1 − y)

)
,

and the Maple package of Lairez shows

C(z) = ∆
(

1
1 − z(1 + x)(1 + y)(xy + y + 1)

)
.

We use the tools of analytic combinatorics in several variables to easily determine
asymptotics of these sequences by hand in Chapter 5, and the algorithms of Chapter 7
are able to rigorously and automatically compute their asymptotics.

3.4.2 Irrational Tilings

As seen in Chapter 2, the smallest collection of univariate rational functions con-
taining 0 and z and closed under addition, multiplication, and f 7→ 1/(1 − z f ) form
the class of N-rational functions, studied for connections to theoretical computer
science and combinatorics. There is a natural multivariate generalization.

Definition 3.26 (multivariateN-rational functions)The set of d-variateN-rational
functions is the smallest set of rational functions containing 0 and z1, . . . , zd which
is closed under addition, multiplication, and pseudo-inverse G 7→ 1/(1 − zjG) for
each j = 1, . . . , d.

Garrabrant and Pak [34] give a combinatorial characterization of sequences which
are diagonals of N-rational functions.

https://oeis.org/A005258
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Fig. 3.6 Left: Two tiles, of size 1 × α and 1 × (1 − α) with α = 1/
√

2. Right: Two possible tilings
(out of six) of a 1× 2 rectangle. There are

(2n
n

)
possible tilings of a 1× n rectangle with these tiles.

Definition 3.27 (tile-counting functions)A tile is an axis-parallel simply connected
closed polygon in the plane of height 1, and a tiling of a rectangle R of height 1 with
the set of tiles T is a sequence of tiles in T , overlapping only on their boundaries,
which cover R (see Figure 3.6). For a fixed set of tilesT and fixed ε > 0, define fT,ε(n)
to be the number of tilings of a 1 × (n + ε) rectangle using the elements of T for
all n ∈ N. Let F be the set of all such tile-counting functions fT,ε : N → N as T
and ε vary.

Garrabrant and Pak [34, Thm. 1.2] prove the following result.

Proposition 3.16 The sequence f (n) ∈ F if and only if the generating func-
tion

∑
n≥0 f (n)zn is the diagonal of an N-rational function.

This allows for a combinatorial interpretation of many rational diagonal sequences.

Example 3.25 (Central Binomial Coefficients Enumerate Tilings)

Let α = 1/
√

2. Because α is irrational, tiling a 1× n rectangle with tiles of size 1×α
and 1× (1 − α), as shown in Figure 3.6, requires exactly n copies of each tile, which
can be arranged in any order. Thus, there are

(2n
n

)
such tilings, and the corresponding

generating function is the diagonal of the rational function F(x, y) = 1/(1 − x − y).

By representing the diagonal coefficients of N-rational functions in terms of a
restricted class of binomial sums, Garrabrant and Pak [34, Thm. 4.2] strengthen
Corollary 3.2 on asymptotics of rational diagonals. In particular, they show that if
F(z) is N-rational with main diagonal sequence dn then there exists m ∈ N such that
for each k = 0, . . . ,m − 1 the sub-sequence (dmn+k)n≥0 either grows exponentially
or is eventually polynomial (when the sequence grows exponentially then its sub-
exponential terms can be non-polynomial).

Although there is an algorithm to determine when a univariate function is N-
rational, it is currently unknown how to characterize N-rationality in higher dimen-
sions. For example, it is an open question [34, Conj. 4.6] whether the generating
function for the Catalan numbersCn =

1
n+1

(2n
n

)
is the diagonal of anN-rational func-

tion (in any number of variables) while as an algebraic function it is the diagonal of
a bivariate rational function. The univariate characterization of N-rationality relies
heavily on a singularity analysis which does not easily translate into the multivariate
case. The techniques developed for the methods of analytic combinatorics in several
variables may provide a source of tools to study this problem.
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Open Problem 3.3 Is there an algorithm to determine when a multivariate rational
function whose power series at the origin has coefficients in N is N-rational.

3.4.3 Period Integrals

The ring of period numbers, introduced by Kontsevich and Zagier [42] as “the
next most important class in the hierarchy of numbers [after algebraic numbers]
according to their arithmetic properties,” contains all complex numbers whose real
and imaginary parts can be expressed as absolutely convergent integrals of the form∫

Γ

F(z)dz ,

where F(z) ∈ Q(z) and Γ ⊂ Rn is defined by polynomial inequalities with rational
coefficients.

Example 3.26 (Period Numbers)

The identities

π =

∫
x2+y2≤1

dx dy, log 2 =
∫ 2

1

dx
x
, ζ(3) =

∫
0<x<y<z<1

dxdydz
(1 − x)yz

,

show that the constants π, log 2, and ζ(3) are all period numbers.

The collection of period numbers includes all algebraic numbers, logarithms of
algebraic numbers, and all multiple zeta values, but it has been open since the work
of Kontsevich and Zagier whether e, Euler’s constant γ, and 1/π are periods (it has
been conjectured they are not). It seems to be difficult to find an explicit example of
a number which is not a period, although the set of period numbers is countable.

Closely related to period numbers are period integrals of rational functions de-
pending on a parameter.

Definition 3.28 (rational period integrals) The class of rational period integrals
depending on a parameter t consists of integrals of the form∫

Γ

F(z, t)dz ,

where F(z, t) ∈ Q(z, t) and Γ is an appropriate domain of integration defined by
polynomial inequalities (so that, for example, the integral is absolutely convergent
for all values of t in some open subset of the complex plane). Note that one integrand
yields multiple period integrals, depending on the domain of integration Γ.
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As discussed above, if F(z) =
∑

i∈Nd fizi is a rational function which is analytic
at the origin then the multivariate Cauchy integral formula implies

(∆F)(t) =
1
(2πi)d

∫
Γ

F(z)
z1 · · · zd − t

dz, (3.8)

where Γ is a polytorus sufficiently close to the origin. Since a circle |z | = ε in
the complex plane can be represented by the real algebraic equation x2 + y2 = ε,
where z = x + iy for real variables x and y, rational diagonals come from rational
period integrals and their evaluations at valid rational arguments yield period num-
bers, up to powers of the (conjecturally not a period number10) 1/π. Periods defined
by (3.8) for different domains of integration Γ give diagonals of different Laurent
expansions of F(z).

Example 3.27 (Periods of Calabi-Yau Threefolds)

Parametrized period integrals defined over cycles on certain algebraic varieties are
known to encode important information about the underlying varieties. For instance,
such period integrals can be used [53] to count the number of rational curves of
fixed degree on hypersurfaces with degree 5 and dimension 3. Much of this theory
has been developed for so-called Calabi-Yau threefolds through the use of “mirror
symmetry” (see Cox and Katz [25] for details and definitions).

Batyrev and Kreuzer [11] determined a family of Calabi-Yau threefolds, identified
by finite sets Pj ⊂ Z

4, and studied their principal periods

ω0(t) =
∫
C

1
1 − t

∑
v∈Pj

zv
dz1dz2dz3dz4

z1z2z3z4

where C is a polytorus sufficiently close to the origin. Batyrev and Kreuzer were
interested in properties of the Picard-Fuchs differential equations annihilating these
integrals: the models break down into 68 classes, of which they were able to guess
such equations for the models in 28 classes. Lairez [45] used a fast creative tele-
scoping algorithm to rigorously compute annihilating differential operators for all
models11. For each polytope Pj , the principal period can be expressed as the diagonal

ω0(t) = ∆

(
1

1 − t(z1z2z3z4)
∑

v∈Pj
zv

)
,

where the rational function is expanded in the ring Q[z, z][[t]].

10 Kontsevich and Zagier call the ring of period numbers extended by powers of 1/π the ring of
extended periods. In addition to the connection to Cauchy-type integrals, those authors explain
how the ring of extended periods is more natural than the ring of periods from the perspective of
motives.
11 Lairez’s complete list of Laurent polynomials

∑
v∈Pj

zv and their annihilating differential oper-
ators can be found at http://pierre.lairez.fr/supp/periods/.

http://pierre.lairez.fr/supp/periods/
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3.4.4 Kronecker Coefficients

Multivariate rational generating functions also appear in representation theory and
algebraic combinatorics, although we need to introduce some definitions before
seeing an example.

Definition 3.29 (representations of the general linear group) For r ∈ N let Gr

denote the group of r × r invertible complex matrices and, for a finite dimensional
complex vector space V , let GL(V) denote the group of linear isomorphisms of V .
A group homomorphism ρ : Gr → GL(V) is called a representation of Gr , and a
representation is irreducible if the only linear subspaces of V that are fixed by all
elements of ρ(Gr ) ⊂ GL(V) are the zero subspace andV itself. An r ×r matrix in Gr

is defined by r2 coordinate variables, and the representation ρ is called a polynomial
representation if the coordinate functions of ρ are polynomials in these coordinate
variables.

Up to isomorphism, the irreducible polynomial representations of Gr have been
classified: for each integer partition λ with at most r summands there is an irre-
ducible representation, denoted Vλ(Gr ), and these form all irreducible polynomial
representations of Gr . See Fulton [31, Ch. 8] for details.

Let λ be an integer partition with at most r2 summands. Using tensor products,
the irreducible polynomial representation Vλ(Gr2 ) of Gr2 can be decomposed as a
sum of elements Vµ(Gr ) ⊗ Vπ(Gr ), for integer partitions µ and π with at most r
summands.

Definition 3.30 (Kronecker coefficients) The multiplicity of Vµ(Gr ) ⊗ Vπ(Gr ) in
this decomposition is called the Kronecker coefficient kλµ,π .

By definition kλµ,π ≥ 0, and it can be shown that kλµ,π = 0 unless µ, π, and λ are
partitions of the same non-negative integer. As long as r is large enough so that the
restriction on the number of summands λ, µ, and π contain is satisfied, the Kronecker
coefficient kλµ,π is independent of r . A detailed account of Kronecker coefficients
can be found in Fulton and Harris [32], including many other natural definitions
connecting Kronecker coefficients to different algebraic and geometric objects.

Kronecker coefficients have been the subject of intense study in representation the-
ory, algebraic combinatorics, quantum physics, and computer science. For example,
positivity of Kronecker coefficients is closely related12 to the geometric complex-
ity theory approach to resolving the P vs. NP conjecture [21]. From an asymptotic
point of view, it is interesting to fix partitions λ, µ, π and study the dilation se-
quence fn = knλ

nµ,nπ , where multiplying a partition by n corresponds to multiplying
each of its summands by n. It follows from work of Meinrenken and Sjamaar [49]
that a dilated Kronecker sequence fn is quasi-polynomial, meaning there exists a
positive integer r and polynomials p1(n), . . . , pr (n) such that fn = pj(n) for all n ≡ j

12 It is NP-hard to determine when Kronecker coefficients are positive [40], although it has recently
been shown [41] that this result cannot be directly extrapolated to separate the complexity classes
P and NP, as was once thought.
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mod p. In particular, a dilated Kronecker sequence fn is C-finite and knowing an
asymptotic expansion of f (n) allows one to determine fn exactly. The complexity
of computing Kronecker coefficients is well studied: see, for example, Burgisser and
Ikenmeyer [20] or Ikenmeyer et al. [40]. Baldoni and Vergne [9] discuss algorithms
for computing dilated Kroencker sequences, and their work has been implemented
in a Maple package by Walter13. Melczer et al. [50] give asymptotics for a family of
Kronecker coefficients which is not a dilated sequence.

Most importantly for this discussion,Mishna et al. [52] give amethod to determine
a diagonal expression for dilated Kronecker sequences. In fact, their results give
rational functions whose r-diagonals describe different dilated Kronecker sequences
as r varies, allowing for unified asymptotic arguments. Combining these diagonal
representations with the techniques of analytic combinatorics in several variables is
an interesting area for new research.

3.4.5 Positivity Results and Special Functions

Although it is difficult (perhaps undecidable) to determine whether a univariate ra-
tional function F(z) = G(z)/H(z) ∈ Q(z) has eventually positive Taylor coefficients,
in practice it is sometimes possible to decide eventual positivity by looking at asymp-
totics of the Taylor coefficients fn = [zn]F(z). For example, when H(z) has a unique
root ρ of smallest modulus then Theorem 2.3 in Chapter 2 implies fn ∼ Cnk ρ−n

for an explicit algebraic number C and non-negative integer k, and fn is eventually
positive if and only if C and ρ are positive real numbers.

Similarly, (eventual) positivity of power series coefficients of multivariate rational
functions has been studied at least since work of Friedrichs and Lewy in the 1920s
on the discretized time-dependent wave equation in two space dimensions. Those
authors asked whether the power series coefficients of

F(x, y, z) =
1

(1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z)

were positive, a result proven and generalized by Szegő [63] using properties of
Bessel functions (which has been further generalized by several other authors, in-
cluding, most recently, Scott and Sokal [60]). Askey and Gasper [7] give a nice
discussion on the uses of such results, and discuss the history of Szegő’s result. Now
that the field of analytic combinatorics in several variables is sufficiently developed,
it is possible to generalize asymptotic arguments from the univariate case to the mul-
tivariate setting. Baryshnikov et al. [10] use analytic combinatorics to prove eventual
positivity for multivariate rational functions whose denominators are linear com-
binations of elementary symmetric polynomials. The diagonals of many elements
in this family have special arithmetic significance as they satisfy D-finite equations
with so-called modular parameterization [62]. Of utmost interest [62, Question 1.1]

13 Available at https://github.com/amsqi/kronecker.

https://github.com/amsqi/kronecker
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is a determination of necessary conditions such that positivity of the diagonal of F
implies positivity of all coefficients of F.

Example 3.28 (Eventual Positivity of Multivariate Rational Functions)

Baryshnikov et al. [10] prove a conjecture of Straub and Zudilin [62] by showing
that the diagonal coefficients of

F(x, y, z) =
1

1 − x − y − z + a(xy + xz + yz) + bxyz

are eventually positive when

b <


−9a a ≤ −3
2 − 3a + 2(1 − a)3/2 −3 ≤ a ≤ 1
−a3 a ≥ 1

and that the coefficients contain an infinite number of positive and negative terms
when the inequality is reversed. See Problem 5.6 in Chapter 5.

3.4.6 The Ising Model and Algebraic Diagonals

The Ising model is an important model of ferromagnetism in statistical physics,
introduced by Lenz [46] in the early twentieth century. Roughly speaking, the model
considers a magnetic field generated by the spins of particles arranged on a lattice
with short range interactions between close electrons; the goal when studying a
model is to describe how these short range interactions, possibly in the presence of
outside forces, dictate large scale system information for different configurations of
spins after certain parameters are fixed. As discussed in Bostan et al. [14, Sec. 30],
many properties of the model can be represented by analytic functions encoded as
diagonals of explicit d-variate algebraic functions. Such algebraic diagonals can be
written as rational diagonals in a larger number of variables, although this process
often destroys nice properties of the original algebraic diagonals. There are some
results about the theory of analytic combinatorics in several variables in the presence
of algebraic singularities [36], though this theory is still in its infancy.

Example 3.29 (Statistics on the Ising Model)

Bostan et al. [13, Appendix C] consider a family of integrals Φ(n)D (w) related to the
‘n-particle contribution to the diagonal magnetic susceptibility of the Ising model’
and give the explicit example
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Φ
(3)
D (w) = ∆

(
1 − 2w +

√
(1 − 2w)2 − 4w2t2

2
√

1 − t2
√
(1 − 2w)2 − 4w2t2

−
1
2

)
.

See that paper for additional examples arising in physics.

3.4.7 Other Sources of Examples

A survey paper by Pemantle and Wilson [54], together with the textbook [55], gives
a wide variety of diagonal expressions arising in applications, including examples in
the study of trees and graphs, quantum computation, orthogonal polynomials, Gaus-
sianweak and central limit laws, queuing theory, integer solutions to linear equations,
tilings of the Aztec Diamond, sequences defined by Riordan arrays, bioinformatics,
the study of polytope dilations, convex polyominoes, symmetric Eulerian numbers,
and strings with forbidden patterns.

An updated website listing papers which rely on the theory of analytic combina-
torics in several variables is maintained at the website

http://ACSVproject.com

Examples from some of these application areas will be worked through or given as
problems in Chapters 5 and 9.

Problems

3.1 If (kn) is a sequence of non-negative integers inwhich every element ofN appears
exactly once, and ( fn) is any sequence over C, then ( fkn ) is called a rearrangement
of ( fn). Prove that if

∑
n≥0 | fn | converges then

∑
n≥0 | fkn | converges. Exhibit a

sequence ( fn) such that
∑

n≥0 fn converges but some rearrangement
∑

n≥0 fkn does
not. Hint: Use the triangle inequality and the fact that the trailing sums

∑
n≥N | fn |

go to zero as N →∞.

3.2 Let H(z) be a multivariate polynomial. Show there exist constants c1, . . . , cd−1
such that making the substitution zj = wj − cj zd for 1 ≤ j ≤ d − 1 results in a
polynomial H(w1, . . . ,wd−1, zd) that is non-constant when w1 = · · · = wd−1 = 0.

3.3 Prove Proposition 3.3 using the multivariate Cauchy integral formula.

3.4 Show that if F(z) ∈ Q(z) is analytic at the origin then its diagonal (∆F)(z)
is globally bounded. Prove that any globally bounded function whose coefficients
grow at most exponentially is a G-function, so that a rational diagonal is always a
G-function.

http://ACSVproject.com
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3.5 (Eisenstein’s theorem) Let F(z) be an algebraic series with rational coefficients.
Use the fact that F(z) is the diagonal of a bivariate rational function to prove the
existence of non-zero integers a, b ∈ Z such that aF(bz) has integer coefficients.

3.6 Prove that the function ex is transcendental without using asymptotic character-
izations of algebraicity.

3.7 Using Stirling’s formula, or the asymptotic results developed in Chapter 5, prove
that the diagonal of the trivariate rational function F(x, y, z) = 1/(1 − x − y − z) is
transcendental.

3.8 Following the argument discussed at the end of Section 3.2.1, prove that the r-
diagonal of a rational function F(z) ∈ Q(z) which is analytic at the origin equals the
main diagonal of some function in Q(z). Prove analogous statements for r-diagonals
of algebraic and D-finite functions over Q.

3.9 Let F(z) = z
√

1 − z so that P(z, F(z)) = 0 where P(z, y) = y2− z2(1− z) satisfies
P(0, 0) = Py(0, 0) = 0. Recall the discriminant fromDefinition 2.14 of Chapter 2, and
let r ∈ N be the natural number such that the discriminant D(z) of P(z, y)with respect
to y can be written D(z) = zrd(z) where d(0) , 0. Writing F(z) = a(z) + zrb(z)
where a(z) is a polynomial of degree at most r ∈ N and b(0) = 0, prove the
existence of a polynomial Q(z, y) such that Q(z, y) and b(z) satisfy the conditions
of Proposition 3.8. Use this to express F(z) as the diagonal of a bivariate rational
function.

3.10 Prove Proposition 3.9 by writing F(z) =
∑

n≥1 Cn(ẑ)znd for analytic Cn(ẑ) and
explicitly finding the terms in y2Py(ẑ, yzd, y)/P(ẑ, yzd, y) where zd and y have the
same exponent.

3.11 Using the recursive nature of a rooted plane tree, prove that the bivariate
generating function T(u, z) =

∑
n,k≥0 tk,nuk zn counting the number tk,n of binary

trees on n nodes with k leaves satisfies the algebraic equation

T(u, z) = zu +
zT(u, z)

1 − T(u, z)
.

3.12 (Lucas’s theorem) The ‘Freshman’s dream’ identity states that for any poly-
nomial f (x) with integer coefficients, f (x)p = f (xp) modulo p. Using this identity
and the binomial theorem, show that(

n
m

)
=

(
a0

b0

)
· · ·

(
ar
br

)
mod p,

where n = a0 + a1p + · · · + ar pr and m = b0 + b1p + · · · + br pr are the base p
expansions of n and m (padded with zeroes if necessary to have the same length).

3.13 Using Lucas’s Theorem, for any prime p find an algebraic equation satisfied by
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F(z) = ∆
(

1
(1 − w − x)(1 − y − z)

)
=

∑
n≥0

(
2n
n

)2
zn

over the finite field of order p. Recall that F(z) is transcendental over C[[z]].

3.14 Prove that if v ∈ Rd is a limit direction of amoeba(H) for H ∈ Q[z, z] then
there exist distinct vectors n and m in N(H) such that v · n = v · m ≥ v · k for
all k ∈ N(H). Hint: When t ≥ 0 and x + tv lies in amoeba(H) there exists ω ∈ Cd∗ ,
with |ωj | independent of t, such that H(ω1ev1t, . . . , ωdevd t ) = 0. What happens
as t →∞?

3.15 Let R(x, y) = 1− x− y− xy3. Prove that the diagonal sequences of the two con-
vergent Laurent expansions of 1/R(x, y) not discussed in this chapter are identically
zero.
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Chapter 4
Lattice Path Enumeration, the Kernel Method,
and Diagonals

And this is the business of the art or doctrine of combinations.
Nor is this art or doctrine to be considered merely as a branch of
the mathematical sciences, for it has a relation to almost every
species of useful knowledge that the mind of man can be
employed upon. — Jakob Bernoulli

Primeval man stumbled along with peering eyes, and slow,
uncertain footsteps. Now we walk briskly towards our unknown
goal. — Arthur Conan Doyle (as J. Stark Munro)

The main objects on which we illustrate the methods of analytic combinatorics in
several variables are lattice paths; by studying successively more complicated lattice
path models we will obtain a variety of problems whose analyses require techniques
touching all areas ofACSV.Lattice path enumeration has a long and colourful history,
dating back centuries. Early accounts of what could now be considered lattice path
problems arose as far back as the seventeenth century probabilistic work of Pascal
and Fermat, including examples analogous to the so-called ballot problem in the
work of de Moivre [78] in 1711, although those authors did not pose their questions
in terms of lattice paths. An 1878 work of Whitworth [87] uses explicit lattice path
terminology (for instance “paces” from an origin) to consider “Arrangements of m
things of one sort and n things of another sort under certain conditions of priority,”
and answered questions posed by the Educational Times including the probability
of drinking k glasses of wine and k glasses of water in a random order while never
drinking more wine than water. Lattice walks were also considered by many to be a
recreational topic, as exemplified by an article of Grossman [53] from 1950 entitled
“Fun with lattice points” and published in the journal Scripta Mathematica aimed
at the layperson. An entertaining history of lattice path enumeration can be found in
the survey of Humphreys [54].

In modern times, lattice paths appear in many diverse areas of mathematics and
the sciences. They are prevalent in probability theory, since sums of discrete random
variables are modeled by random walks, and, for similar reasons, are deeply related
to statistical methods such as the Kolmogorov-Smirnov goodness-of-fit test [79].
Lattice path models are able to model physical phenomena and find use in statistical
mechanics, for instance in the study of polymers in a solution [85]. Additional
applications include formal language theory [20], queuing theory [37, 8], the analysis
of data structures [31, 43, 44], Liouville quantum gravity [6], the combinatorics
of continued fractions [42], the study of other combinatorial structures such as
plane partitions, trees, and sequences of Young tableaux, and even mathematical
art [55, 56]. Detailed treatments of lattice paths and their applications include the
texts of Mohanty [77] and Narayana [79], and the survey of Krattenthaler [64].
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Fig. 4.1 A two-dimensional lattice walk in the quarter-plane of length 20, using the step set
S = {(−1, −1), (−1, 1), (1, −1), (1, 1)}.

Formal Setup

Fix a dimension d ∈ N>0.

Definition 4.1 (lattice path models) Given a finite set of steps S ⊂ Zd , region
R ⊂ Rd , starting point p ∈ R, and terminal set T ⊂ R, the lattice path model taking
steps inS, starting at p, restricted toR, and ending in T is the combinatorial class of
all finite tuples (s1, . . . , sr ) ∈ Sr such that p+s1+· · ·+sr ∈ T and p+s1+· · ·+sk ∈ R
for all 1 ≤ k ≤ r . We call the valid sequences in Sr the walks or paths of the model:
they can be visualized in Zd by starting at p and concatenating the vectors s1, . . . , sr
in order, as in Figure 4.1. The steps of a walk are the elements of the tuple defining
the walk, and the size or length of a walk is the number of steps it is composed of.
Lattice walks beginning and ending at the same point are often called excursions.

We focus mainly on the case when the restricting region R is an orthant Nd or a
product Zs × Nd−s . Many models restricted to other regions can be viewed in this
setting, as can other types of lattice paths (for instance, collections of pairwise non-
intersecting paths can often be viewed as walks in Nd). By convention we say that
all models have a single walk of length zero, which ends at the starting point p.

We also consider weighted walks.

Definition 4.2 (weighted lattice pathmodels) In a weighted lattice path model each
step i ∈ S is given a positive real weight wi > 0. In this case, the weight of a path
(s1, . . . , sr ) ∈ Sr is the product of the weights ws1 · · ·wsr , and counting the number
of paths of length n refers to summing the weights of all valid paths of length n.

In probabilistic contexts, one often considers weighted step sets whose weights add
to one. Combinatorially, when all weights are positive integers one can imagine
having differently coloured copies of steps. Weighted counting is the same as regular
unweighted enumeration when every step is given weight one.
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The key idea for lattice path enumeration is to work recursively, treating a walk of
length n as a walk of length n − 1 followed by a single step. Unfortunately, knowing
the number of walks of length n − 1 is usually not sufficient to determine how many
walks there are of length n: when most of the walks of length n − 1 end near the
boundary of the restricting region R many of them would leave R with a single step,
but the situation is very different whenmost walks end far from the boundary. For this
reason, we introduce a multivariate generating function W(z, t) whose coefficients
count the number of walks in a model by their length and endpoint in Zd , and use
an approach known as the kernel method to derive equations satisfied by various
generating functions related to the model. The kernel method naturally results in
rational diagonal expressions for many lattice path generating functions, to which
we apply the methods of ACSV. Our presentation follows a combinatorial approach
to the kernel method developed mainly by Bousquet-Mélou and collaborators in a
sequence of papers [21, 24, 22, 12] over roughly the last decade. Section 4.2.1 gives
some historical remarks on the kernel method.

4.1 Walks in Cones and The Kernel Method

Fix a step set S ⊂ Zd and, as is the standard in lattice path enumeration, for any
variable x write x = 1/x.

Definition 4.3 (characteristic polynomials) The characteristic polynomial of an
unweighted lattice path model defined byS is the Laurent polynomial S(z) =

∑
i∈S zi

whosemonomials encode the steps inS. The characteristic polynomial of a weighted
lattice path model where each i ∈ S has weight wi > 0 is S(z) =

∑
i∈S wizi.

We build up the kernel method by considering successively more complicated re-
stricting regions R. Unless otherwise stated, the walks we consider begin at the
origin and can end anywhere in R.

4.1.1 Unrestricted Walks

We begin with unweighted unrestricted walks in Zd (so R = Zd). Because there
are no restrictions on where a walk can go, there are |S|n walks on length n on the
steps S, and the generating function C(t) counting the number of walks by length is

C(t) =
∑
n≥0
|S|ntn =

1
1 − t |S|

.

In order to illustrate the kernel method, and obtain a more refined analysis of these
models, we introduce the multivariate generating function
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W(z, t) =
∑
n≥0

(∑
i∈Zd

fi,nzi

)
tn,

where fi,n denotes the number of walks in the model which have n steps and end
at i ∈ Zd . Since S is finite, W(z, t) lies in the ring Z[z, z][[t]], meaning W is a
power series in t whose coefficients are Laurent polynomials in the z variables.
All series operators such as diagonals will be taken with respect to the expansion
of W in Z[z, z][[t]], following the setup of Section 3.3.2 in Chapter 3. Because
there are |S|n walks of length n, this series expansion of W converges absolutely
whenever |z1 | = · · · = |zd | = 1 and |t | < 1/|S|.

In order to exploit the recursive nature of a lattice path, for any n ∈ N we let

Wn(z) = [tn]W(z, t) =
∑
i∈Zd

fi,nzi

denote the generating function of walks of length n counted by their endpoint. If our
walks begin at the point p ∈ Zd then W0(z) = zp, as by convention there is a single
walk of length zero ending at p. Since a walk of length n + 1 is a walk of length n
followed by a single step, it follows that

Wn+1(z) = S(z)Wn(z) (4.1)

for all n ≥ 0, where S(z) =
∑

i∈S zi is the characteristic polynomial from Defini-
tion 4.3. Multiplying (4.1) by tn+1 and summing over all n ∈ N gives the equation

W(z, t) −W0(z) = tS(z)W(z, t),

so that
(1 − tS(z))W(z, t) = zp. (4.2)

Definition 4.4 (unrestricted kernel equation)Equation (4.2) is known as the kernel
equation for unrestricted walks, with kernel K(z, t) = 1 − tS(z).

In the following sections we derive similar equations for lattice pathmodels restricted
to other regions, but the right-hand side of the resulting equations will rely on
evaluations and coefficient extractions of (a priori unknown) multivariate generating
functions. Here we can simply divide both sides of the kernel equation to obtain

W(z, t) = zp

1 − tS(z)
. (4.3)

Specializing z = 1 sums over the possible end locations for a walk of length n,
allowing us to recover

C(t) = W(1, t) = 1
1 − tS(1)

=
1

1 − t |S|
,
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but further refinements are possible. For instance, the series E(t) = [z0]W(z, t) counts
the number of walks which begin and end at the origin. The generating function for
such walks is thus given by the main diagonal

E(t) = [z0]W(z, t) = ∆W(z, z1 · · · zdt) = ∆
(

zp

1 − t(z1 · · · zd)S(z)

)
,

which is D-finite by Theorem 3.2 of Chapter 3.
Note that (4.3) still holds when each step i ∈ S is given weight wi > 0 and W(z, t)

counts the number of weighted walks marked by endpoint and length, as long as the
characteristic polynomial is replaced by its weighted version S(z) =

∑
i∈S wizi.

4.1.2 A Deeper Kernel Analysis: One-Dimensional Excursions

When d = 1, the generating function counting walks ending at the origin is

E(t) = ∆
(

xp

1 − t xS(x)

)
which, as the diagonal of a bivariate function, is algebraic. Assume now that p = 0
and let −m and M with m, M > 0 be the smallest and largest elements of S, so that S
contains both a step with negative value and a step with positive value (otherwise
there can be no walks ending at the origin). For |t | < 1/S(1) the generating function
is given by the integral expression

E(t) =
∫
|x |=1

1
1 − tS(x)

dx
x
, (4.4)

which follows either from the diagonal expression or straight from the Cauchy
integral formula. The poles of this integrand are the roots ofK(x, t) = 1−tS(x), which
we now study. Since xmK(x, t) = xm−t xmS(x) is a polynomial of degree m+M in x,
Proposition 2.10 in Chapter 2 implies the kernel K(x, t), considered as a polynomial
in x, has m roots r1(t), . . . , rm(t) which are fractional power series in t and M
roots R1(t), . . . , RM (t) which approach infinity as t approaches zero.

Definition 4.5 (small and large kernel roots)The roots r1(t), . . . , rm(t) are the small
roots of K(x, t), while R1(t), . . . , RM (t) are the large roots of K(x, t).

Setting t = 0 in the equation

rj(t)m = t rj(t)m S(rj(t))

implies rj(0) = 0; i.e., a small root rj(t) has no constant term. Although not necessary
here, we note that since rj(t) has no constant term one may substitute x = rj(t) in
any element of R[[x, t]] to obtain a well-defined Puiseux expansion in t. This will be
key to enumerating walks in a half-space.
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Proposition 4.1 Let S ⊂ Z be a step set with smallest element −m for m > 0. Then
the generating function E(t) enumerating walks on the steps S which begin and end
at the origin has the representation

E(t) = t
m∑
j=1

r ′j (t)

rj(t)
,

where r1(t), . . . , rm(t) are the small roots of the kernel K(x, t) = 1 − tS(x) in x.

Remark 4.1 The statement of Proposition 4.1 does not require that S has a positive
step. If S contains only negative steps then there are no excursions of positive length
and the expression for E(t) correctly simplifies to 1.

Proof For t non-zero but sufficiently close to the origin only the small roots rj(t)
lie inside the curve |x | = 1, so (4.4) and the residue theorem imply that E(t) is a
sum of residues at these roots (note x = 0 is not a singularity of the integrand as
m > 0). If r(t) satisfies 1 − tS(r(t)) = 0 then taking the derivative with respect to t
shows −S(r(t)) − tr ′(t)S′(r(t)) = 0, so that S′(r(t)) , 0 and

S′(r(t)) = −
S(r(t))
tr ′(t)

= −
1

t2r ′(t)
.

Thus, each root of the kernel is a simple zero and

E(t) =
m∑
j=1

Res
x=rj (t)

(
1

x(1 − tS(x))

)
= t−1

m∑
j=1

(
1

−rj(t) S′(rj(t))

)
= t

m∑
j=1

r ′j (t)

rj(t)
,

as desired. �

Example 4.1 (One Dimensional Excursions)

SupposeS = {−2,−1, 0, 1, 2} ⊂ Z, so that S(x) = x−2+ x−1+1+ x+ x2. As expected,
the equation 1 − tS(x) = 0 has 2 solutions

r1(t) = t1/2 +
t
2
+

5t3/2

8
+ · · · r2(t) = −t1/2 +

t
2
−

5t3/2

8
+ · · ·

which approach zero as t approaches zero, and two solutions

R1(t) = t−1/2 −
1
2
−

3t1/2

8
+ · · · R2(t) = −t−1/2 −

1
2
+

3t1/2

8
+ · · ·

which approach infinity as t approaches zero. Thus, the generating function of walks
beginning and ending at the origin satisfies

E(t) =
t r ′1(t)

r1(t)
+

t r ′2(t)

r2(t)
= 1 + t + 5t2 + 19t3 + 85t4 + · · · .
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Note that although r1(t) and r2(t) are not analytic at the origin the generating func-
tion E(t) is analytic there. Knowing theminimal polynomial of r1 and r2, the minimal
polynomial m(t, y) of E(t) can be calculated using resultants, giving

m(t, y) = (4 + 5t)(5t − 1)2(t − 1)2y4 + 2(t − 1)(5t − 2)(5t − 1)y2 + t .

Problem 4.1 asks you to generalize this argument to walks with arbitrary starting
point p ∈ Z. See also Banderier and Flajolet [5] for similar results in this setting.

4.1.3 Walks in a Half-Space

Consider now aweighted step setS′ ⊂ Zd restricted to the half-spaceR ′ = Zd−1×N.
In order to enumerate walks ending anywhere, or walks ending on the boundary
hyperplane zd = 0, it is enough to project each step onto its dth coordinate to obtain
a new weighted step set S ⊂ Z and count walks restricted to R = N. To simplify
our presentation we thus restrict ourselves to the case of one-dimensional walks inN
beginning at the origin, losing only a small amount of generality. Now, define

H(x, t) =
∑
n≥0

(∑
i≥0

hi,nxi
)

tn ∈ R[x][[t]]

where hi,n counts the number of weighted half-space walks of length n on the steps
in S ending at a point with x-coordinate i. As before, let −m and M be the smallest
and largest elements ofS, where we assumem, M > 0 so that the valid walks are non-
trivial and actually interact with the boundary of R = N. With Hn(x) = [tn]H(x, t)
enumerating the walks of length n by endpoint, our goal is to obtain a recurrence
for Hn; this recurrence will not be the same as the unrestricted case as we must
take into account walks that try to leave N. Fortunately, using the bivariate function
H(x, t) tracking the endpoint of a walk allows us to ensure that walks do not leave N.

Define again the weighted characteristic polynomial

S(x) =
∑
i∈S

wi xi = w−mx−m + · · · + wM xM,

where wi > 0 is the real weight associated to the step i ∈ S. To keep track of walks
potentially leaving the half-space, for any integer j with 0 ≤ j < m we let

S<−j(x) = w−mx−m + · · · + w−j−1x−j−1

be the sum of terms in S(x) corresponding to steps moving in a negative direction
of magnitude larger than j. As a walk of length n + 1 is a walk of length n followed
by a single step from S, we have the recurrence
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Hn+1(x) = S(x)Hn(x) −
m−1∑
j=0

S<−j(x) x j[x j]Hn(x)

for all n ≥ 0, where the subtracted sum ensures no walks come from outside R = N.
Multiplying by tn+1 and summing over all n ≥ 0 implies

K(x, t)H(x, t) = 1 − t
m−1∑
j=0

S<−j(x) x j[x j]H(x, t), (4.5)

where K is again the kernel K(x, t) = 1 − tS(x). Note that H0(x) = 1 as we assume
that walks begin at the origin.

Definition 4.6 (half-space kernel equation) Equation (4.5) is the kernel equation
for the half-space model defined by S. The coefficient extractions [x j]H(x, t) are
called sections of H.

Although the Laurent polynomials S<−j(x) in (4.5) are explicit, the sections of H are
unknown series, meaning one can no longer simply solve for the generating function
H(x, t). Thankfully, we can obtain explicit generating function expressions using an
argument similar to our treatment of one-dimensional excursions. Let r1(t), . . . , rm(t)
denote the small roots of the kernel K(x, t), discussed in Definition 4.5, which are
fractional power series in t with no constant term.

Proposition 4.2 Let S ⊂ Z be a weighted step set with smallest element −m. Then
the bivariate generating function H(x, t) enumerating walks restricted to R = N by
length and endpoint has the representation

H(x, t) =

∏m
j=1

(
1 − xrj(t)

)
1 − tS(x)

,

where S(x) is the weighted characteristic polynomial of S. In particular, the uni-
variate generating function counting walks in N using the step set S is

C(t) = H(1, t) =
∏m

j=1
(
1 − rj(t)

)
1 − tS(1)

,

and the generating function for the number of walks returning to the boundary x = 0
of R = N is

E(t) = H(0, t) =
(−1)m−1

w−mt

m∏
j=1

rj(t).

Remark 4.2 We can set x = 0 in H(x, t) since H(x, t) contains only non-negative
exponents in x. The statement of Proposition 4.2 does not require that S has a
positive step. If S contains only negative steps then there are no walks of positive
length and H(x, t) correctly simplifies to 1 since all roots of K = 1− tS(x) are small.
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Proof The right-hand side of (4.5) is a polynomial in x of degree m with constant
term one. Substituting x = rj(t) into (4.5) shows that this polynomial vanishes at
each of the m small roots, meaning

K(x, t)H(x, t) =
m∏
j=1

(
1 − xrj(t)

)
.

The expressions for C(t) and E(t) follow from substitution. �

Example 4.2 (Dyck Paths and Prefixes)

Let S = {−1, 1} be the unweighted step set (w−1 = w1 = 1) with characteristic
polynomial S(x) = x + x. The kernel equation (4.5) becomes

(1 − t(x + x))H(x, t) = 1 − t x [x0]H(x, t) = 1 − t xH(0, t). (4.6)

Solving the kernel 1 − t(x + x) = 0 for x gives two solutions

r1(t) =
1 −
√

1 − 4t2

2t
= t+t3+2t5+· · · R1(t) =

1 +
√

1 − 4t2

2t
= t−1−t−t3+· · · ,

consisting of one small root and one large root. Because r1(t) is a power series with
no constant term, we can substitute x = r1(t) into (4.6) to obtain

H(0, t) =
1 −
√

1 − 4t2

2t2 =
∑
n≥0

1
n + 1

(
2n
n

)
t2n,

meaning the number of walks of length 2n returning to the origin is the nth Catalan
number, and

H(x, t) =
1 − t xH(0, t)
1 − t(x + x)

=
1 − 2xt −

√
1 − 4t2

2t(t + t x2 − x)
.

Thus

C(t) = H(1, t) =
1
2t

(√
1 + 2t
1 − 2t

− 1

)
has dominant singularities t = ±1/2, with local expansions

C(t) =
√

2(1 − 2t)−1/2 + · · · and C(t) = 1 −
1
√

2
(1 + 2t)1/2 + · · · .

Proposition 2.11 inChapter 2 implies these singularities give contributions 2nn−1/2
√

2/π
and (−2)nn−3/2/(2

√
π) to the asymptotics of cn = [tn]C(t), so

cn = 2nn−1/2
√

2
√
π

(
1 +O

(
n−1

))
.
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Note that the dominant asymptotic term is not periodic, but higher order asymptotic
terms do have periodicity: in fact cn =

( n
bn/2c

)
and this periodicity comes from the

presence of the floor function.
Walks in N on the steps S which begin and end at the origin are commonly

referred to as Dyck paths, and those without any constraint on endpoint as Dyck
prefixes. Enumerating Dyck paths is often referred to as the ‘ballot problem’, since
the number of Dyck paths of length 2n counts the number of ways two candidates
running for an office, Alice and Bob, can split 2n votes in such a way that Alice
always stays ahead of Bob as the votes are individually added (this problem was
studied by Whitworth, Bertrand, André, and others in the nineteenth century). An
approach of Knuth to the ballot problem is one of the first combinatorial uses of
what has become the kernel method; see Section 4.2.1 below for details.

Since Proposition 4.2 gives an expression for the generating function H(x, t) in
terms of explicit algebraic functions, the enumeration of lattice paths restricted to a
half-space is essentially a solved problem. Such an expressionwas originally given by
Gessel [49]; see also Bousquet-Mélou and Petkovšek [25, Ex. 3] and Banderier and
Flajolet [5] for asymptotic results. An alternative expression for H(x, t) involving a
non-negative series expansion of algebraic power series in t and x is given by Bostan
et al. [12, Prop. 19].

4.1.4 Walks in the Quarter-plane

Next,we considerwalks on aweighted step setS′ ⊂ Zd restricted to the quarter-space
R ′ = Zd−2 × N2. As for half-space models, if we are only interested in enumerating
the total number of walks in the model, or counting those ending on one or both
of the boundary hyperplanes zd−1 = 0 and zd = 0, we may project a walk onto its
last two coordinates and consider the resulting lattice path model restricted to the
quadrant R = N2. Although lattice path models in a half-space always have algebraic
generating functions by Proposition 4.2, it is possible for models in a quadrant to
have D-finite, D-algebraic, and even hypertranscendental generating functions. This
diversity of behaviour has led to a great deal of attention on quadrant walks in the
combinatorial and probabilistic literature, with many natural questions remaining
open for decades. We will soon see how rational diagonal representations play a key
role in the enumeration of these objects.

Because of the possibility of very pathological behaviour for walks in a quadrant,
we put some restrictions on the models we consider.

Definition 4.7 (short step models) Any step set S ⊂ {±1, 0}d is called a short step
set, and a lattice path model with a short step set is called a short step model.

The restriction to short steps results in a kernel which is quadratic in each variable,
simplifying considerations. In this section we consider only unweighted short step



4.1 Walks in Cones and The Kernel Method 153

models in the non-negative quadrant. The enumeration of some models with longer
steps is discussed in Chapter 10.

The Algebraic Kernel Method

Given a step set S ⊂ {±1, 0}2 we define the multivariate generating function

Q(x, y, t) =
∑
i, j≥0

(∑
n≥0

qi, j,nxiy j
)

tn ∈ Z[x, y][[t]],

where qi, j,n counts the number of quarter-plane walks of length n on the steps in S
which end at the point (i, j), and recall again the characteristic polynomial

S(x, y) =
∑
(i, j)∈S

xiy j ∈ Z[x, y, x, y].

Once more the recursive structure of a walk of length n + 1 as a walk of length n
followed by a single step gives a kernel equation satisfied byQ(x, y, t). SinceQ(x, 0, t)
and Q(0, y, t) give, respectively, the generating functions of walks ending on the x-
and y-axes, and S contains only unit steps, the kernel equation for short step models
in the quarter-plane can be written

xy(1 − tS(x, y))Q(x, y, t) = xy − t I(y) − t J(x) + εtQ(0, 0, t), (4.7)

where I(y) = y
(
[x−1]S(x, y)

)
Q(0, y, t) and J(x) = x

(
[y−1]S(x, y)

)
Q(x, 0, t), and

the constant

ε =

{
1 : (−1,−1) ∈ S
0 : otherwise

accounts for potentially subtracting walks at the origin twice.

Definition 4.8 (quadrant kernel equation) Equation (4.7) is the kernel equation for
the quadrant model defined byS, and the Laurent polynomial K(x, y, t) = 1−tS(x, y)
is called the kernel of the model.

Our solution of half-space models involved finding the roots of a bivariate kernel in
one variable; the additional variable now present in the kernel for quadrant walks
complicates this approach as we would need to consider algebraic surfaces defined
by K(x, y, t) = 0 instead of algebraic curves.

To work around this difficulty, Bousquet-Mélou [21], inspired by probabilis-
tic work of Fayolle et al. [37], developed the so-called algebraic kernel method,
which does not require finding roots of the kernel. The key is to introduce a group
of substitutions which fix the kernel K(x, y, t), and leverage information obtained
through application of the group elements to get an expression for Q(x, y, t) as the
non-negative series extraction of a rational function.



154 4 Lattice Path Enumeration, the Kernel Method, and Diagonals

Because we assume thatS has short steps, there exist unique Laurent polynomials
Aj(y) and Bj(x) for j ∈ {−1, 0, 1} such that

S(x, y) = xA1(y) + A0(y) + xA−1(y) = yB1(x) + B0(x) + yB−1(x).

When S contains a step with negative x-coordinate, and a step with negative y-
coordinate, the Laurent polynomials A1(y) and B1(x) are non-zero. The transforma-
tions

Ψ : (x, y) 7→
(
x

A−1(y)

A1(y)
, y

)
and Φ : (x, y) 7→

(
x, y

B−1(x)
B1(x)

)
then fix S(x, y), and thus also K(x, y, t).

Definition 4.9 (group of a short-step quadrant model) The group G of the lattice
pathmodel determined byS is the group of transformations of the xy-plane generated
by the involutions Ψ and Φ under composition (containing Ψ, Φ, Ψ ◦Φ, Φ ◦Ψ, etc.).

We can view an element σ ∈ G as a map from Laurent polynomials to iterated
Laurent series which takes f ∈ C[x, y, x, y] and returns

σ · f (x, y) = σ ( f (x, y)) = f (σ(x, y)) ∈ C((x, y)),

and extend this to elements
∑

n≥0 fn(x, y)tn ∈ C[x, y, x, y][[t]] by defining

σ ·
∑
n≥0

fn(x, y)tn = σ

(∑
n≥0

fn(x, y)tn
)
=

∑
n≥0

fn(σ(x, y))tn ∈ C((x, y))[[t]].

Example 4.3 (The Group for N-S-E-W Quarter-Plane Walks)

Let S = {(±1, 0), (0,±1)} be the set of cardinal directions. Then

S(x, y) = x + (y + y) + x = y + (x + x) + y

and the kernel equation reads

xy(1 − t(x + x + y + y))Q(x, y, t) = xy − tyQ(0, y) − t xQ(x, 0).

The group G is generated by the maps

Ψ(x, y) = (x, y) and Φ(x, y) = (x, y),

so it is the group of order 4 whose elements map (x, y) to one of (x±1, y±1).

Remark 4.3 Following the common convention in the lattice path literature, we will
not include the stationary step (0, 0) in our step sets. Definition 4.9 implies that
adding the stationary step does not change the group of a model, and our arguments
below generalize naturally to models obtained by adding the stationary step.
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Fig. 4.2 The 23 short step sets defining quarter-plane models with finite group G, up to rotation
over the line y = x and with the models trivially isomorphic to half-plane models removed. Each
arrow represents an element of the set {±1, 0}2 \ {(0, 0)}, and each collection of arrows with
common base point defines a step set.

A priori, there are 28 − 1 possible non-empty step sets S ⊂ {±1, 0}2 \ {(0, 0)}
to consider, but the situation is actually much better. Indeed, if we are interested in
models which truly need to be viewed in a quarter-plane then we do not need to
consider step sets S

• where every step has at least one negative coordinate, as there are no valid walks
of positive length;

• with no steps having positive x-coordinate, or no steps having positive y-
coordinate, as they are isomorphic to half-plane models;

• with no steps having negative x-coordinate, or no steps having negative y-
coordinate, as they are isomorphic to half-plane models;

• such that j ≥ i for all (i, j) ∈ S, as a sequence of steps whose x-coordinate
stays non-negative must have y-coordinates staying non-negative, and the model
is isomorphic to a half-plane model;

• such that i ≥ j for all (i, j) ∈ S, as a sequence of steps whose y-coordinate
stays non-negative must have x-coordinates staying non-negative, and the model
is isomorphic to a half-plane model.

Furthermore, as the quarter-plane is symmetric over the line y = x if S is a step
set and S′ is the step set obtained by reversing the coordinates of the steps in S,
then the lattice path models defined by S and S′ are isomorphic. Removing these
half-plane models in disguise, Problem 4.2 asks you to prove there are 79 remaining
quarter-plane models up to rotation of S over the line y = x; see Figures 4.2
and 4.4. This classification of short step quarter-plane models was originally given
by Bousquet-Mélou and Mishna [24].

Example 4.4 (A One-Dimensional Model in The Plane)

If S = {(−1, 0), (0, 1), (0,−1)} then the first step in S can never be used, so the
quadrant lattice path model defined by S is equivalent to the one-dimensional model
in a half-space counting Dyck prefixes.
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Generating Function Representations for Finite Group Models

For each of the 79 quarter-plane models now under consideration the maps Ψ and Φ
are explicitly determined by S, and when the group G is finite it is easily generated
in a computer algebra system. Figure 4.2 shows the 23 models with finite group; the
remaining 56 models, which have infinite group, are discussed below. When G is
finite, it can often be leveraged to determine the generating function Q(x, y, t).

Example 4.5 (The Generating Function for N-S-E-W Quarter-Plane Walks)

When S = {(±1, 0), (0,±1)} the group G consists of the maps sending (x, y) to one
of (x±1, y±1). Since the elements of G fix the kernel K(x, y, t), applying the group
elements to the kernel equation gives the system of equations

xy(1 − t(x + x + y + y))Q(x, y, t) = xy − tyQ(0, y) − t xQ(x, 0)
xy(1 − t(x + x + y + y))Q(x, y, t) = xy − tyQ(0, y) − t xQ(x, 0)
x y(1 − t(x + x + y + y))Q(x, y, t) = x y − tyQ(0, y) − t xQ(x, 0)
xy(1 − t(x + x + y + y))Q(x, y, t) = xy − tyQ(0, y) − t xQ(x, 0).

The crux of the algebraic kernel method is that each of the unknown functions
Q(0, y),Q(x, 0),Q(x, 0),Q(0, y) appears exactly twice in this system. Taking an alter-
nating sum of these equations yields, after some algebraic manipulation,

xyQ(x, y, t) − xyQ(x, y, t) + x yQ(x, y, t) − xyQ(x, y, t) =
xy − xy + x y − xy
1 − t(x + x + y + y)

.

Since the generating function Q(x, y, t) lies in Z[x, y][[t]], every term in xyQ(x, y, t)
contains positive powers of x and y. In contrast, when the remaining summands
xyQ(x, y, t), x yQ(x, y, t), and xyQ(x, y, t) are expanded in Z[x, x, y, y][[t]] every
term contains a negative power of x or a negative power of y. Thus, recalling the
non-negative series extraction operator from Section 3.3.2 of Chapter 3,

Q(x, y, t) = [x≥0y≥0]
xy − xy + x y − xy

xy (1 − t(x + x + y + y))
= [x≥0y≥0]

(x − x)(y − y)

xy (1 − t(x + x + y + y))
.

Proposition 3.14 from Chapter 3 then implies the generating function counting the
number of walks in the model is the main diagonal

C(t) = Q(1, 1, t) = ∆
(

(1 + x)(1 + y)

1 − t xy(x + x + y + y)

)
.

This showsC(t) is D-finite, and the creative telescoping package of Lairez [66] gives
the D-finite equation

t2(4t − 1)(4t + 1)C ′′′(t) + 2t(4t + 1)(16t − 3)C ′′(t)

+ (224t2 + 28t − 6)C ′(t) + (12 + 64t)C(t) = 0.
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In Chapter 3 we determined coefficient asymptotics of C(t) up to a constant factor
by analyzing this differential equation. In Chapter 5 we will determine dominant
asymptotics exactly using analytic combinatorics in several variables. The number of
quarter-plane walks of length n on the stepsS has dominant asymptotic growth 4

π
4n
n ,

so Corollary 2.1 from Chapter 2 implies C(t) is transcendental.

The argument in this example generalizes, forming the algebraic kernel method.
Since Ψ andΦ are involutions, when G is finite it has even order 2k and any element
g ∈ G can be written uniquely in the form

g = Φ ◦ Ψ ◦ · · · ◦ Φ ◦ Ψ or g = Ψ ◦ Φ ◦ · · · ◦ Φ ◦ Ψ,

where there are 0 ≤ r < 2k terms in the correct composition.

Definition 4.10 (sign)The sign of g ∈ G expressed in this manner is sgn(g) = (−1)r .

Proposition 4.3 Assume that the group G is finite. Then∑
g∈G

sgn(g) g(xyQ(x, y, t)) =
1

1 − tS(x, y)

∑
g∈G

sgn(g) g(xy). (4.8)

As the elements of G are bi-rational transformations, the composition g(xyQ(x, y, t))
results in an element of Z((x, y))[[t]]; that is, a power series in t whose coefficients
are iterated Laurent series in x and y.

Proof Let X(x, y) and Y (x, y) denote the rational functions defined by (X, y) =
Ψ(x, y) and (x,Y ) = Φ(x, y). Applying the maps Ψ and Φ successively to (4.7) gives

(id) xy(1 − tS(x, y))Q(x, y, t) = xy − t I(y) − t J(x) + εtQ(0, 0, t)
(Ψ) Xy(1 − tS(X, y))Q(X, y, t) = Xy − t I(y) − t J(X) + εtQ(0, 0, t)

(Φ ◦ Ψ) XY (1 − tS(X,Y ))Q(X,Y, t) = XY − t I(Y ) − t J(X) + εtQ(0, 0, t),

since both Ψ and Φ fix S(x, y). As both −t I(y) and −t J(X) appear on the right-hand
sides of consecutive equations, taking an alternating sum of these three equations
cancels those terms. In fact, since Ψ and Φ each fix one coordinate, continuing to
compose the group generators in this manner and taking an alternating sum of the
resulting equations successively cancels all unknown functions of the form I(Y ′)
and J(X ′) which appear on the right-hand side. Because the group is finite and
of even order, this repeated composition of group elements returns to the identity,
resulting in (4.8). �

Definition 4.11 (orbit sum equations) Equation (4.8) is known as the orbit sum
equation associated to the lattice path model defined by S.

Although it becomes difficult to define the group of a model when S no longer has
small steps, the orbit sum equation can be generalized in several situations [12].
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Fig. 4.3 The four step sets defining quadrant models with finite group to which Proposition 4.4
does not apply.

A short examination1 of (4.8) for the finite group models in Figure 4.2 shows that
in 19 cases xyQ(x, y, t) is the only term on the left-hand side which contains only
non-negative powers of x and y when expanded in Z((x, y))[[t]], as in the example
above. This gives the following.

Proposition 4.4 Let S be one of the 23 step sets defining a model with finite group,
displayed in Figure 4.2. If S is not one of the four models listed in Figure 4.3 then

Q(x, y, t) = [x≥0y≥0]
©« 1

1 − tS(x, y)

∑
g∈G

sgn(g) g(xy)ª®¬ .
When the rational function in Proposition 4.4 has an expansion inQ[x, y, x, y][[t]],

Proposition 3.14 in Chapter 3 immediately gives a diagonal expression for the
generating functions of walks ending anywhere in the quarter plane, returning to
the origin, or ending on either boundary axis. Although there are models where the
rational function in Proposition 4.4 cannot be expanded with Laurent polynomial
coefficients, these models are symmetric over one axis and a more involved argument
shows that the same diagonal expression holds (see Proposition 4.8 below). Thus,
we obtain the following.

Theorem 4.1 Let S be one of the 19 short step sets in Figure 4.2 which is not listed
in Figure 4.3. Then for a, b ∈ {0, 1},

Q(a, b, t) = ∆
(

O(x, y)
(1 − x)a(1 − y)b(1 − t xyS(x, y))

)
,

where O is the orbit sum O(x, y) =
∑

g∈G sgn(g)g(xy).

In particular, the generating functions Q(1, 1, t) for walks ending anywhere in
the quadrant, Q(1, 0, t) and Q(0, 1, t) for walks ending on one of the boundary axes,
and Q(0, 0, t) for walks ending at the origin, are D-finite. In fact, Proposition 4.4 im-
plies themultivariate generating functionQ(x, y, t) is D-finite, meaning theQ(x, y, t)-
vector space spanned by all its partial derivatives is finite-dimensional. The results
of Chapter 10 give asymptotics for these models; see Remark 10.3 of Chapter 10.
Table 4.1 summarizes the asymptotic behaviour of these models.

In the case of the remaining four models with finite group, with step sets in
Figure 4.3, both sides of the orbit sum equation (4.8) are identically zero due to an
element g ∈ G of negative sign which fixes the product xy.

1 See the computer algebra worksheets available on the book website.
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S Asymptotics S Asymptotics S Asymptotics

4
π

4n
n

√
3

2
√
π

3n√
n

An

π
(2
√

2)n
n2

2
π

4n
n

4
3
√
π

4n√
n

Bn

π
(2
√

3)n
n2

√
6
π

6n
n

√
5

3
√

2π
5n√
n

Cn

π
(2
√

6)n
n2

8
3π

8n
n

√
5

2
√

2π
5n√
n

√
8(1+
√

2)7/2
π

(2+2
√

2)n
n2

2
√

2
Γ(1/4)

3n
n3/4

2
√

3
3
√
π

6n√
n

√
3(1+
√

3)7/2
2π

(2+2
√

3)n
n2

3
√

3
√

2Γ(1/4)
3n
n3/4

√
7

3
√

3π
7n√
n

√
570−114

√
6(24
√

6+59)
19π

(2+2
√

6)n

n2

√
6
√

3
Γ(1/4)

6n
n3/4

3
√

3
2
√
π

3n
n3/2

8
π

4n
n2

4
√

3
3Γ(1/3)

4n
n2/3

3
√

3
2
√
π

6n
n3/2

Table 4.1 Asymptotics for the 23 D-finite models.

An =

{
24
√

2 : n even
32 : n odd

, Bn =

{
12
√

3 : n even
18 : n odd

, Cn =

{
12
√

30 : n even
144/
√

5 : n odd

Example 4.6 (A Zero Orbit Model)

The model defined by the final step set S = {(±1, 0), (−1,−1), (1, 1)} in Figure 4.3 is
known as Gessel’s model. Here

Ψ =

(
1
xy
, y

)
and Φ =

(
x,

1
yx2

)
,

and the group G, of order 8, consists of the maps

(x, y)

Ψ

(
1
xy , y

)
Φ

(
1
xy , yx2

)
Ψ

(
1
x , yx2

)
Φ (

1
x ,

1
y

)
Ψ

(
xy, 1

y

)
Φ

(
xy, 1

yx2

)
Ψ

(
x, 1

yx2

)
Φ

Since (Ψ ◦ Φ ◦ Ψ)(xy) = xy, and Ψ ◦ Φ ◦ Ψ has odd sign, the orbit sum is zero.

Although the above argument does not quite work for the models in Figure 4.3,
it turns out that the multivariate generating function Q(x, y, t) for each model is
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Fig. 4.4 The 56 short step sets defining non-isomorphic quarter plane models with infinite group.

algebraic (and thus also D-finite). The first three models can be analyzed using a
variant of the kernel method known as the obstinate kernel method, also introduced
by Bousquet-Mélou [21]; details can be found in Bousquet-Mélou and Mishna [24].
Algebraicity for the final model, Gessel’s model, was open for several years before
being proven by a computer algebra approach of Bostan and Kauers [16]. Because
these models are algebraic, they can be written as the diagonals of bivariate functions
using Proposition 3.8 in Chapter 3, but such representations are less elegant than
those obtained directly through the kernel method and Theorem 4.1. Asymptotics can
be derived directly from the algebraic equations satisfied by each model’s generating
function, so we do not consider these four models in any additional detail.

Infinite Group Models

Figure 4.4 shows the 56 short step sets defining quadrant models with infinite group.
As can be expected, proving that the group of a model is infinite requires more
work than proving finiteness (it is harder to prove the absence of structure than its
existence). Since Ψ and Φ are involutions, the group G they generate is finite if
and only if some iteration of the composed map Θ = Φ ◦ Ψ has finite order: the
key is to exhibit some property of Θ which shows no repeated composition Θn for
integer n ≥ 1 is the identity. We briefly detail an argument which can be used for
this purpose, following the presentation of Bostan et al. [12] which expands on ideas
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found in Bousquet-Mélou and Mishna [24] and Bostan et al. [17]. First we prove the
following result, stated in a general setting as it will be used again in later chapters.

Proposition 4.5 Let S ⊂ Zd be a finite set not contained in a half-space (i.e., there
does not exist n ∈ Zd such that i · n ≥ 0 for all i ∈ S). If S(z) =

∑
i∈S wizi is a

weighted characteristic polynomial with wi > 0 for all i ∈ S then the system

Sz1 (z) = Sz2 (z) = · · · = Szd (z) = 0

defined by the partial derivatives of S admits a unique solution in Rd
>0, which is the

unique minimum of S on Rd
>0.

Definition 4.12 (vanishing points) A point where all partial derivatives of S vanish
is called a vanishing point of S. (These are typically called critical points, but we
reserve this name for another concept arising in Chapter 5.)

Proof Let
L(x) = S(ex) = S(ex1, . . . , exd ) =

∑
i∈S

wiei·x. (4.9)

Then for 1 ≤ j ≤ d the chain rule implies Lx j (x) = ex j Sz j (e
x), so

Sz1 (z) = Sz2 (z) = · · · = Szd (z) = 0

for z ∈ Rd
>0 if and only if

Lx1 (x) = Lx2 (x) = · · · = Lxd (x) = 0,

where x = (log z1, . . . , log zd) ∈ Rd . Thus, to characterize the vanishing points of S
in Rd

>0 it is enough to search for vanishing points of L in Rd . The function L(x) is
known as the Laplace transform of S(x).

The Laplace transform is useful because the exponential function is strictly con-
vex: if a, b > 0 and a + b = 1 then eat+bs ≤ aet + bes , with equality if and only
if t = s. As L(x) is a positive linear combination of exponentials, if a, b > 0 with
a+ b = 1 then L(ax+ by) ≤ aL(x)+ bL(y)with equality if and only i ·x = i ·y for all
i ∈ S. Thus, L(x) is strictly convex unless there exists a non-zero vector n ∈ Rd such
that i · n = 0 for all i ∈ S, which cannot occur as S is not contained in a half-space.

If x, y ∈ Rd and λ ∈ (0, 1) this implies

L(λy + (1 − λ)x) < λL(y) + (1 − λ)L(x),

so
L(x + λ(y − x)) − L(x)

λ
< L(y) − L(x)

and taking λ→ 0 gives

(y − x)T · ∇L(x) + L(x) < L(y).



162 4 Lattice Path Enumeration, the Kernel Method, and Diagonals

In particular, any vanishing point of L, where its gradient vanishes, is the global
minimum of the convex function L on Rd , so L admits at most one vanishing point.
Furthermore, for w ∈ Rd and t ∈ R we have

L(tw) =
∑
i∈S

wiet(i·w),

so L(tw) → ∞ when w , 0 is fixed and t approaches either ±∞, unless i ·w ≥ 0 for
all i ∈ S or i · w ≤ 0 for all i ∈ S. Since S is not contained in a half-plane we can
conclude L(z) → ∞ as |z| → ∞. This shows L(x) admits a global minimizer, which
must be its unique vanishing point, and taking coordinate-wise exponentials gives
the unique vanishing point of S(z) with positive coordinates. �

This vanishing point with positive coordinates gives a necessary condition for a
lattice path model to have finite group.

Proposition 4.6 LetS be a two-dimensional small stepmodel not contained in a half-
plane and let (a, b) be the unique vanishing point of S(x, y) with positive coordinates
guaranteed by Proposition 4.5. If the group of transformations generated byΦ andΨ
is finite then

Sxy(a, b)√
Sxx(a, b) Syy(a, b)

= cos θ, (4.10)

where θ is some rational multiple of π.

Proof Recall that

S(x, y) = xA1(y) + A0(y) + xA−1(y) = yB1(x) + B0(x) + yB−1(x)

for Laurent polynomials Aj(y) and Bj(x), so

Sx(x, y) = A1(y) − x2 A−1(y) and Sy(x, y) = B1(x) − y2B−1(x).

Since (a, b) is a vanishing point of S(x, y), this implies

a
A−1(b)
A1(b)

= a and b
B−1(a)
B1(a)

= b,

so (a, b) = Ψ(a, b) = Φ(a, b) is a fixed point of G. If Θ = Φ ◦ Ψ then taking a local
expansion of Θ centred at (a, b) implies

Θ(a + x, b + y) = (a, b) + (x, y) · J(a, b) + higher order terms, (4.11)

where J(a, b) is the Jacobian matrix of Θ, defined by J(a, b) =
(
−1 −η
ν νη − 1

)
for

η =
2Sxy(a, b)
Sxx(a, b)

and ν =
2Sxy(a, b)
Syy(a, b)

.



4.1 Walks in Cones and The Kernel Method 163

Note that Sxx(a, b) = 2a−3 A−1(b) and Syy(a, b) = 2b−3 A−1(a) are non-zero
as a, b > 0. Because (a, b) is a fixed point of Θ, Equation (4.11) implies that the
iterations Θr of the map Θ satisfy

Θ
r (a + x, b + y) = (a, b) + (x, y) · J(a, b)r + higher order terms

for all r ∈ N. Thus, if some repeated compositionΘr is the identity map then J(a, b)r

is the identity matrix, meaning all eigenvalues of J(a, b) are rth roots of unity. By
direct calculation the eigenvalues of J satisfy λ2 − (ην − 2)λ + 1 = 0, so if the
group associated to S is finite then there exists some rational multiple of π, which
we denote θ, such that λ2 − (ην − 2)λ + 1 = (λ − e2iθ )(λ − e−2iθ ). Comparing the
coefficients of λ on both sides of this equation implies

Sxy(a, b)2

Sxx(a, b) Syy(a, b)
=
ην

4
=

e2iθ + e−2iθ + 2
4

=
cos(2θ) + 1

2
= cos2 θ,

as desired. �

Because the left-hand side of (4.10) is an algebraic number, Proposition 4.6 gives
an effective method to detect when S has infinite group. In particular, it is sufficient
to do the following:

1. Using resultants, determine the minimal polynomial M(λ) of the values of λ in
the two solutions of

λ2 − (ην − 2)λ + 1 = Sx(a, b) = Sy(a, b) = 0,

η =
2Sxy(a, b)
Sxx(a, b)

, ν =
2Sxy(a, b)
Syy(a, b)

, a, b > 0.

2. Check whether M(λ) is a cyclotomic polynomial (i.e., the minimal polynomial
of a root of unity)

Because cyclotomic polynomials can be efficiently computed [1], this gives an au-
tomated method of proving that a step set admits an infinite group; it immediately
proves that the 51 models in Figure 4.4 not contained in a half-plane have infinite
groups. Bostan et al. [17] use a similar approach to show that the generating func-
tion Q(0, 0, t) of excursions is non-D-finite for these 51 models, giving the following.

Proposition 4.7 Let S be a two-dimensional small step model not contained in a
half-plane. Unless

c =
Sxy(a, b)√

Sxx(a, b) Syy(a, b)

can be written c = cos θ, where θ is some rational multiple of π, the generating
function Q(0, 0, t) is non-D-finite.

The idea behind Proposition 4.7 is to leverage probabilistic results of Denisov
andWachtel [32] to show that the number of excursions en of a model satisfies e2n ∼
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Fig. 4.5 The 5 singular models, whose step sets are contained in a half-plane.

C ρn nα, where α = −1 − π/arccos(−c). By Corollary 2.2 of Chapter 2, Q(0, 0, t)
cannot be D-finite unless c has the stated form (looking only at e2n helps account for
periodicities present in some models). Because we focus mainly on models which
are D-finite, where asymptotics can be determined by studying rational diagonals,
we refer the interested reader to Bostan et al. [17] for details. Bostan et al. [12]
generalize this argument to quadrant walks with non-small step sets, closely linking
having an infinite group to the non-D-finiteness of excursions; see also Bostan [10].

Example 4.7 (An Infinite Group Model)

Consider the set of steps S = {(−1,−1), (0,−1), (0, 1), (1, 0), (−1, 0)} with character-
istic polynomial S(x, y) = 1/(xy) + 1/y + y + x + 1/x. Then

Ψ(x, y) =
(
1 + y

x
, y

)
and Φ(x, y) =

(
x,

1 + x
y

)
,

so
Θ(x, y) = (Φ ◦ Ψ)(x, y) = Φ

(
1 + y

x
, y

)
=

(
1 + y

x
,
1 + x + y

1 + y

)
.

The eigenvalues of the Jacobian matrix J of Θ at the vanishing point of S(x, y) with
positive coordinates a, b > 0 satisfy

λ2 −

(
1

(1 + a)(1 + b)
− 2

)
λ + 1 = a2b − b − 1 = ab2 − a − 1 = 0,

and a resultant calculation implies that at any solution

(λ2 + 3λ + 1)(λ6 + 8λ5 + 28λ4 + 41λ3 + 28λ2 + 8λ + 1) = 0.

Since neither of these irreducible factors is a cyclotomic polynomial, no power of J
is the identity and the group of S is infinite. The work of Denisov and Wachtel [32]
implies that the number of excursions has dominant asymptotics en ∼ C S(a, b)n n−α

for some constant C > 0 and irrational

α = 1 +
π

arccos
(

1
2
√
(1+a)(1+b)

) = 2.757 . . . .
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Although the generating functions enumerating walks returning to the origin are
non-D-finite for these infinite group models, the precise nature of the generating
functions enumerating walks ending anywhere in the quadrant is still unknown.

Open Problem 4.1 Determine which lattice path models defined by the step sets in
Figure 4.4 have non-D-finite generating function Q(1, 1, t).

We end our discussion of quadrant walks with the 5 models of Figure 4.4 whose
step sets lie in a half-plane; known as singular models, they are shown in Figure 4.5.
The singular models can be dealt with [76, 71] using another kernel method variant,
the iterated kernel method. The key is that kernel K(x, y, t) admits a root y = Y+(x, t)
which is a power series in x and t, and a root x = X+(y, t)which is a power series in y

and t, such that Y+ (respectively X+) has a lowest-order term which contains positive
powers in t and x (respectively t and y). Because of this, X+ andY+ can be repeatedly
composed to obtain functions whose lower order terms have increasingly large
powers of x and y; each of these compositions is in the orbit of (x, y) under the group
of the model, showing the group is infinite. Furthermore, substituting these repeated
compositions into the kernel equation and taking an infinite alternating series gives
an explicit infinite sum representation for the generating function Q(x, y, t). For
example, if S is one of the 3 singular models whose step set is symmetric over the
line y = x and Yn(x, t) = Yn−1(Y+(x, t), t) for n ∈ N with Y0 = x then the generating
function counting all walks satisfies

Q(1, 1, t) =
1

1 − |S|t

(
1 − 2

∞∑
n=0
(−1)nYn(1, t)Yn+1(1, t)

)
.

Elementary arguments show that each summand in this infinite series contributes
at least one unique singularity to Q(1, 1, t), so Q(1, 1, t) admits an infinite num-
ber of singularities and is thus non-D-finite. Details can be found in Melczer and
Mishna [71].

4.1.5 Orthant Walks Whose Step Sets Have Symmetries

Moving on from quadrant walks, we now fix a dimension d and study lattice path
models restricted to the orthant Nd whose step sets have many symmetries. In
particular, we consider models defined by a weighted step set S ⊂ {±1, 0}d , where
each i ∈ S is given real weight wi > 0 such that

• Walks on the step set can move forwards and backwards in each direction:

For all j = 1, . . . , d there exists i ∈ S with ij = 1

For all j = 1, . . . , d there exists i ∈ S with ij = −1
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• The step set and weighting are symmetric over every axis, or every axis except
for one. If there is an axis of non-symmetry we may assume it corresponds to the
final coordinate, so if S(z) =

∑
i∈S wizi is the weighted characteristic polynomial

of the model we have

S(z1, . . . , zj−1, z j, zj+1, . . . , zd) = S(z)

for all 1 ≤ j ≤ d − 1.

Definition 4.13 (highly andmostly symmetric models)We call a weighted step set
which is symmetric over every axis highly symmetric and a weighted step set which
is symmetric over all but one axis mostly symmetric.

Note that while the step sets under consideration are symmetric, the individual walks
in the models do not need to satisfy any symmetry conditions. Because we study
only short step models, we may write

S(z) = zdA(ẑ) +Q(ẑ) + zdB(ẑ)

for Laurent polynomials A,Q, and B which are symmetric in their variables ẑ =
(z1, . . . , zd−1), and S is highly symmetric if and only if A(ẑ) = B(ẑ). The symmetries
present in such a model will allow us to generalize the algebraic kernel method to
this setting and obtain explicit representations of the generating functions involved.

Definition 4.14 (group of a symmetric orthant model) For each 1 ≤ j ≤ d − 1
define the map

σj(z) = (z1, . . . , zj, z j, zj+1, . . . , zd),

and define the map

γ(z) =
(
z1, . . . , zd−1, zd

A(ẑ)
B(ẑ)

)
.

The group G of the lattice path model determined by S is the group of transforma-
tions generated by the σj and γ. Because the group generators are now commuting
involutions, we may write G explicitly as

G =
{
σ

j1
1 · · ·σ

jd−1
d−1 γ

jd : j1, . . . , jd ∈ {0, 1}
}
.

For σ = σ j1
1 · · ·σ

jd−1
d−1 γ

jd ∈ G the sign of σ is sgn(σ) = (−1)j1+· · ·+jd .

Imposing our symmetry condition on S implies G is a group of order 2d which
is isomorphic to the direct sum of cyclic groups of order 2. Again we may view
any element of G as a map from C[z, z][[t]] to C((z))[[t]], and the characteristic
polynomial S(z) is fixed under the action of all such elements.

Consider the multivariate generating function

W(z, t) =
∑
i∈Nd

n≥0

fi,nzitn
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where fi,n counts the number of weighted walks of length n using the steps in S
which begin at the origin, end at i ∈ Nd , and never leave Nd . Problem 4.3 asks you
to prove that W(z, t) satisfies the functional equation

(z1 · · · zd )W (z, t) = (z1 · · · zd ) + t(z1 · · · zd )S(z)W (z, t)

− t
∑

V⊂[d]

(−1)|V |(z1 · · · zd )S(z)W (z, t)
���
z j=0, j∈V

(4.12)

where [d] = {1, . . . , d}, generalizing (4.7) from the two-dimensional case. Note
that (4.12) relies heavily on S having short steps, but does not use any of our
symmetry requirements.

Since the generators of G commute, and applying a generator to an element of G
negates its sign, we can explicitly determine the orbit sum∑

σ∈G

sgn(σ)σ(z1 · · · zd) = (z1 − z1) · · · (zd−1 − zd−1)

(
zd − zd

A(ẑ)
B(ẑ)

)
.

This givesW(z, t) as the non-negative series extraction of an explicit rational function.

Theorem 4.2 If S is mostly or highly symmetric then the multivariate generating
function W(z, t) tracking endpoint and length satisfies W(z, t) = [z≥0]R(z, t), where

R(z, t) =
(z1 − z1) · · · (zd−1 − zd−1)

(
zd − zd

A(ẑ)
B(ẑ)

)
(z1 · · · zd)(1 − tS(z))

. (4.13)

In the highly symmetric case, A(ẑ) = B(ẑ).

Remark 4.4 The non-negative series extraction [z≥0]R(z, t)works with the expansion
of R(z, t) in R = Q((z))[[t]]. The order of the variables in the iterated Laurent
series ring is important: if zd were not the last variable then (4.13) would not
necessarily hold in the mostly symmetric case. In the highly symmetric case R(z, t)
has an expansion in Q[z, z][[t]] and the order of the variables in the extraction is
unimportant.

Proof Equation (4.12) implies

(1 − tS(z))(z1 · · · zd)W(z, t) = (z1 · · · zd) +
d∑

k=1
Lk(zk̂, t), (4.14)

for some Lk(zk̂, t) ∈ Q[zk̂][[t]]. Consider T(z, t) = σ(z1 · · · zd)W(σ(z), t) where
σ = σ

j1
1 · · ·σ

jd−1
d−1 γ

jd ∈ G. When jd = 1 then, because of the ordering of the
variables, every term in the expansion of T(z, t) in R = Q((z))[[t]] will have a
negative power of zd . On the other hand, if jd = 0 and there exists k ∈ {1, . . . , d−1}
such that jk = 1 then every term in the expansion of T(z, t) in R will have a negative
power of zk . Thus, [z≥0]T(z, t) = 0 unless σ ∈ G is the identity element, and
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[z≥0]
∑
σ∈G

sgn(σ)σ(z1 · · · zd)W(σ(z), t) =
∑
σ∈G

sgn(σ)[z≥0] [σ(z1 · · · zd)W(σ(z), t)]

= (z1 · · · zd)W(z, t).

Since G fixes S(z), and (z1 · · · zd)W(z, t) contains only positive powers of the z
variables, to prove Theorem 4.2 it is sufficient to show∑

σ∈G

sgn(σ)
(
σ · Lk(zk̂, t)

)
= 0

for each 1 ≤ k ≤ d. Fix k and define the sets

G0 =
{
σ

j1
1 · · ·σ

jd−1
d−1 γ

jd : i1, . . . , jd ∈ {0, 1}, jk = 0
}

G1 =
{
σ

j1
1 · · ·σ

jd−1
d−1 γ

jd : i1, . . . , jd ∈ {0, 1}, jk = 1
}
.

Because Lk(zk̂, t) is independent of zk , we see (σkσ) · Lk(zk̂, t) = σ · Lk(zk̂, t) for
all σ ∈ G. Thus,∑
σ∈G

sgn(σ)
(
σ · Lk(zk̂, t)

)
=

∑
σ∈G0

sgn(σ)
(
σ · Lk(zk̂, t)

)
+

∑
σ∈G1

sgn(σ)
(
σ · Lk(zk̂, t)

)
=

∑
σ∈G0

[sgn(σ) + sgn(σkσ)]
(
σ · Lk(zk̂, t)

)
= 0,

since sgn(σkg) = − sgn(g) for any g ∈ G. �

We would like to apply Proposition 3.14 from Chapter 3 to (4.13) in order to
obtain a diagonal expression for the generating functionW(1, t) counting the number
of walks in the orthant Nd , together with diagonal expressions for walks returning
to some or all of the boundary axes. In the highly symmetric case R(z, t) has an
expansion in Q[z, z][[t]], and this is valid. In the mostly symmetric case, however,
the presence of the B(ẑ) term in the denominator means onemust expand in the larger
ring R = Q((z))[[t]] and Proposition 3.14 does not directly apply. Unfortunately, this
requires a more involved formal power series argument.

Proposition 4.8 Let S be a mostly or highly symmetric weighted step set. Then,
expanding in R, the generating function counting the number of walks of a given
length in the lattice path model defined by S satisfies

W(1, t) = ∆
©«
(1 + z1) · · · (1 + zd−1)

(
B(ẑ) − z2

d
A(ẑ)

)
(1 − zd)B(ẑ)(1 − tz1 · · · zdS(z))

ª®®¬ ,
where S(z) = S(z1, . . . , zd−1, zd). When S is highly symmetric then A(ẑ) = B(ẑ)
and S(z) = S(z), so
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W(1, t) = ∆
(
(1 + z1) · · · (1 + zd)
1 − tz1 · · · zdS(z)

)
.

Proof Let

T(z, t) =
(1 + z1) · · · (1 + zd−1)

(
B(ẑ) − z2

d
A(ẑ)

)
(1 − zd)B(ẑ)(1 − tz1 · · · zdS(z))

= (−1)d−1 (z1 · · · zd−1)
2R(z1, . . . , zd−1, zd, z1 · · · zdt)
(1 − z1) · · · (1 − zd)

,

where R(z, t) is the rational function in (4.13). Since [tn]R(z, t) is a Laurent polyno-
mial in zd for all n ∈ N, we are formally justified in substituting zd = zd into the
expansion2

R(z, t) =
∑

i∈Zd,n≥0

ri,nzitn

of R(z, t) in the ring R = Q((z))[[t]], obtaining

T(z, t) = (−1)d−1
∑

i∈Zd,j∈Nd

n≥0

ri,nzi1+j1+n+2
1 · · · zid−1+jd−1+n+2

d−1 z−id+jd+n
d

tn.

Taking the nth diagonal term of this series gives

[tn]∆T(z, t) = (−1)d−1
∑
j∈Nd

r−j1−2,...,−jd−1−2, jd,n

and we must show this final sum equals
∑

i∈Nd ri,n for all n ≥ 0. Expanding (4.13)
as a power series in t implies that for any n ≥ 0

[tn]R(z, t) = (z1 − z1) · · · (zd−1 − zd−1)

z1 · · · zd−1
×
(zdA(ẑ) +Q(ẑ) + zdB(ẑ))n

zdB(ẑ)
,

so Pn(ẑ) = [z≥0
d
][tn]R(z, t) is a Laurent polynomial in z (any term with a non-

negative exponent of zd is a monomial times non-negative powers of A, B, and Q).
In particular, we are formally justified in substituting zj = z j for 1 ≤ j ≤ d − 1 into
the expansion of Pn(ẑ) in R. Since A, B, and Q are unchanged when zj is replaced
by z j ,

Pn(z1, . . . , zd−1) =
(z1 − z1) · · · (zd−1 − zd−1)

z1 · · · zd−1
× [z≥0

d ]
(zdA(ẑ) +Q(ẑ) + zdB(ẑ))n

zdB(ẑ)
= (−1)d−1(z1 · · · zd−1)

2Pn(ẑ),

2 Because this expansion of R(z, t) lies in R, many of the coefficients ri,n are zero.
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and taking the coefficient of zi implies ri,n = (−1)d−1r−i1−2,...,id−1−2,id,n for all i ∈ Nd,
proving the desired equality for [tn]∆T(z, t). �

In the highly symmetric case, Proposition 4.8 gives a beautiful expression for the
generating function as the diagonal of the power series expansion of a simple and
explicit multivariate rational function. In the mostly symmetric case, however, the
factor of B(ẑ) in the denominator means that the resulting rational function may not
be analytic at the origin. Although we can work directly with diagonals of Laurent
series expansions using the tools from Chapter 3, an easier solution is to use the
following alternative encoding.

Proposition 4.9 Let S be a mostly or highly symmetric weighted step set. Then the
generating function counting the number of walks of a given length in the lattice path
model defined by S satisfies W(1, t) = ∆

(
G(z,t)
H(z,t)

)
, where

G(z, t) = (1 + z1) · · · (1 + zd−1) (1 − tz1 · · · zd (Q(ẑ) + 2zdA(ẑ)))

H(z, t) = (1 − zd)
(
1 − tz1 · · · zdS(z)

)
(1 − tz1 · · · zd (Q(ẑ) + zdA(ẑ))) .

Proof Expanding R(z, t) defined in (4.13) gives

(1 − z2
1) · · · (1 − z2

d−1)

(
1 − z2

d

A (ẑ)
B (ẑ)

) ∑
n≥0

tn (zdA (ẑ) +Q (ẑ) + zdB (ẑ))n .

Since the series

(1 − z2
1) · · · (1 − z2

d−1)

(
z2
d

A (ẑ)
B (ẑ)

) ∑
n≥0

tn (zdA (ẑ) +Q (ẑ))n

contains no positive powers of zd , we can add it to R(z, t) and obtain W(z, t) as the
non-negative series extraction of

(1 − z2
1) · · · (1 − z

2
d−1)

(
1 − z2

dA (ẑ) /B (ẑ)
)

1 − tS(z)
+
(1 − z2

1) · · · (1 − z
2
d−1)

(
z2
dA (ẑ) /B (ẑ)

)
1 − t (zdA (ẑ) +Q (ẑ))

.

This simplifies to

(1 − z2
1) · · · (1 − z2

d−1) (1 − t (2zdA (ẑ) +Q (ẑ)))
(1 − t (zdA (ẑ) +Q (ẑ) + zdB (ẑ))) (1 − t (zdA (ẑ) +Q (ẑ)))

,

which has an expansion in Q[z, z][[t]]. Proposition 3.14 of Chapter 3 now applies,
giving the stated result. �

Not only does the rational function F(z, t) = G(z, t)/H(z, t) in Proposition 4.9
always have an expansion inQ[z][[t]], the coefficients of this power series expansion
are all non-negative, which will greatly simplify arguments about the singularities
of F(z, t). Note that Propositions 4.8 and 4.9 can give different rational diagonal
expressions, even in the highly symmetric case (of course, both multivariate rational
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functions will have the same diagonal). In the highly symmetric case we always
use the expression in Propositions 4.8, which is simpler as it makes full use of the
symmetries of a model.

Example 4.8 (Two Diagonal Expressions for a Walk Generating Function)

Proposition 4.8 implies the generating function of the quarter-plane model on the
steps S = {(±1, 0), (0,±1)} is the diagonal of the rational function

(1 + x)(1 + y)

1 − t(x2y + y + y2x + x)
,

while Proposition 4.9 implies it is the diagonal of

(1 + x)
(
1 − ty(1 + 2xy + x2)

)
(1 − y)

(
1 − t(x2y + y + y2x + x)

) (
1 − ty(1 + xy + x2)

) .
Problem 4.5 asks you to prove these two rational functions have equal diagonals.

Propositions 4.8 and 4.9 imply that the generating functionW(1, t) counting walks
in a highly or mostly symmetric lattice path model is D-finite. We conclude this sub-
section by noting that in any dimension d ≥ 2 there is a model which is symmetric
over all but two axes and has non-D-finite generating function. Thus, one cannot
obtain rational diagonal expressions for generating functions of all short step models
symmetric over r < d − 1 axes.

Proposition 4.10 For any dimension d ≥ 2 there is a step set Sd ⊂ {±1, 0}d that
is symmetric over all but two axes, such that the generating function counting the
number of walks inN2 starting at the origin and using the steps inSd is non-D-finite.

Proof We give an asymptotic proof. We have shown above that the number of
excursions of the two dimensional lattice path model in N2 defined by the step
set S2 = {(−1,−1), (0,−1), (0, 1), (1, 0), (−1, 0)} has asymptotic growth of the form
en ∼ C ρn nα for α < Q. Probabilistic work of Duraj [34] then implies that the
number of walks on S2 restricted to N2 and ending anywhere has asymptotic growth
of the form fn ∼ C2 ρ

n nα, so that the generating function counting the number of
walks on S in N2 is non-D-finite by Corollary 2.2 of Chapter 2.

For d ≥ 3 let Sd = S2 × {±1}d−1. A walk of length n on the steps of Sd is
determined by a walk of length n on the steps S2 in N2 and d − 2 independent walks
of length n on the steps {±1} on N; i.e., d − 2 independent Dyck prefixes. Since, as
calculated in an example above, the number ofDyck prefixes of length n has dominant
asymptotics dn ∼ (2/π)1/22nn−1/2 the number of walks on Sd restricted to Nd has
dominant asymptotics of the form f (d)n ∼ Cdρ

n
d

nαd where αd = α − (d − 2)/2 < Q.
Thus, the generating function of walks on Sd in Nd has non-D-finite generating
function by Corollary 2.2 of Chapter 2. �
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We have now characterized the generating functions of several large families of
lattice path models. We return to these models in Chapters 6 and 10, where we
determine asymptotics using analytic combinatorics in several variables.

4.2 Historical Perspective

We end by surveying some of the recent history around the methods and results
discussed above.

4.2.1 The Kernel Method

The kernel method has a long and delicate history of which we give only a broad
overview. The development can be roughly broken down into two tracks, coming
from the probabilistic and combinatorial literature. The queuing theory works of
Malyshev [69, 68] in the early 1970s are a good introduction to the probabilistic
approach: inspired by the Wiener-Hopf method for solving integral equations—
which itself dates back to the 1930s and shares similarities with the kernel method—
Malyshev sets up a bivariate kernel equation and examines the solutions of the
kernel in one variable. As is typical in this approach, the algebraic solutions of
the kernel are analytically continued to a Riemann surface and then studied; a
characterization of the solutions is obtained by solving boundary value problems.
The survey of Malyshev [70] gives detailed references to early literature in this
area. The kernel method also appears3 around this time in independent work of
Kingman [61]. Early applications of the probabilistic kernel method include work
by Flatto and collaborators [46, 45, 47] and Fayolle and Iasnogorodski [36], with the
latter paper being a clear early exposition of the method. The probabilistic approach
was thoroughly detailed and popularized into the wider mathematical community by
the textbook of Fayolle et al. [37]. In particular, that text popularized the notion of
the group of a walk, which would become central to the algebraic kernel method.

From a combinatorial perspective, the classical kernel method—setting up a
functional equation for a bivariate function and substituting a solution of the kernel
for one of its variables—is often attributed to the 1968 textbook of Knuth [62],
which includes two exercises [62, Ex. 4 and 11, Sect. 2.2.1] and solutions essentially
solving the ballot problem with the kernel method4. This approach has parallels to
work by Brown and Tutte on what came to be known as the ‘quadratic method’
for solving functional equations arising in planar map enumeration [27, 28], and
in statistical mechanical work following from the so-called ‘Bethe ansatz’ (see, for

3 Thanks to Alin Bostan for pointing out this reference.
4 Knuth [62, p. 537] writes “We present here a new method for solving the ballot problem with the
use of double generating functions, since this method lends itself to the solution of more difficult
problems. . . ”.
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instance, Slavnov [82]). Such generating function manipulations are common in the
enumerative community, and similar techniques appear in a variety of works [30, 29,
18, 67, 80] from the 1970s to 90s before the method was fully distilled. The name
‘kernel method’ came into use5 in the late 1990s or early 2000s in the combinatorics
community [2, 25], around the same time a full study of the power and flexibility of
the method was undertaken. The seminal works on the classical combinatorial kernel
method in the early 2000s include Bousquet-Mélou and Petkovšek [25], Banderier
et al. [4], and Banderier and Flajolet [5]; work of Prodinger [81] around this time
surveys some of the combinatorial applications. As mentioned above, the ‘algebraic’
kernel method variant was developed by Bousquet-Mélou [21] to deal with kernel
equations by examining transformations fixing the kernel instead of solving the
kernel. Bousquet-Mélou [19, 21] also developed the ‘obstinate’ kernel method,
where one looks both for roots of the kernel and transformations fixing the kernel.
The ‘iterated’ kernel method, used to show non-D-finiteness of certain generating
functions of walk models with infinite group, was introduced by van Rensburg et
al. [86]. Bousquet-Mélou and Jehanne [23] gave a generalization solving polynomial
functional equations in two variables, and Bostan et al. [12] extended the algebraic
kernel method from short step models to those with longer steps.

4.2.2 Recent History of Lattice Paths in Orthants

Through various forms of the ballot problem, lattice path models restricted to a half-
space have been studied for centuries. In modern times, Gessel [49] gave general
algebraic expressions for half-space models, with a full and complete accounting
of the asymptotic behaviour of walks confined to a half-space given by Banderier
and Flajolet [5]. Bostan et al. [14] discuss the complexity of enumerating walks and
excursions which are either unrestricted or restricted to a half-plane.

Kreweras [65] gave an early study of a lattice pathmodel in the quarter-plane, later
revisited in the work of Bousquet-Mélou [21] which introduced the algebraic kernel
method; see also Gessel [50]. The probabilistic study of short step models in the
quarter-plane followed the development of the probabilistic kernel method discussed
above, captured in the text of Fayolle et al. [37]. The lattice path models we consider
have a counting sequence whose dominant asymptotics is a finite sum of terms of the
formCnαρn for constantsC, α, and ρ. Using the probabilistic kernel method, Fayolle
and Raschel [39] outlined a method which in principle allows one to determine the
exponential growth rate ρ for the non-singular models, and determined ρ in many
cases; see also the second edition of Fayolle et al. [38, Ch. 11]. The systematic
combinatorial study of walks in a quadrant was popularized by Bousquet-Mélou and

5 The first published use of the term ‘kernel method’ (“méthode du noyau” in French) occurs in
Banderier [2]; this name apparently arose verbally in the research group of Phillipe Flajolet around
1998, who mentioned at the time that the name was in use by probabilists whose identities now
seem lost to time. The author thanks Cyril Banderier for recounting some of this history; see also
the introduction of Banderier and Wallner [3] for some historical remarks.
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Mishna [24], followingwork of Petkovšek [80], Bousquet-Mélou and Petkovšek [26],
and Mishna [75]. Bousquet-Mélou and Mishna proved that the generating functions
of 22 of the 23 short step models with finite group in the quarter-plane are D-finite,
leaving open only the D-finiteness of Gessel’s model.

Using the kernel method and creative telescoping methods, Kauers et al. [58]
gave a computer algebra proof of a long standing open question on the number of
excursions for Gessel’s model in the non-negative quadrant, following an approach
discussed by Kauers and Zeilberger [59]; see also Kauers and Zeilberger [60] and
Koutschan et al. [63] for related problems. Bostan and Kauers [16] proved that the
multivariate generating function Q(x, y, t) tracking endpoint and length for Gessel’s
model is algebraic by guessing an algebraic equation satisfied by Q(x, y, t) and
rigorously proving the equation using algebraic tools; Bostan et al. [9] and Bousquet-
Mélou [22] later gave alternate proofs. Similarly, by guessing algebraic and D-finite
equations satisfied by the generating functions of each of the 79 non-isomorphic
models in the quarter-plane, Bostan and Kauers [15] conjectured6 the asymptotics
for the 23 short step models in the quarter-plane with D-finite generating function
shown in Table 4.1. The guessed D-finite equations for these generating functions
were later proven by Bostan et al. [13], which also expressed the generating functions
in terms of explicit hypergeometric functions. These explicit expressions are not
enough to determine dominant asymptotics for every model, due to issues related
to the connection problem for D-finite functions. Bostan et al. [17] proved that the
generating function counting excursions for the 51 non-singular short step models
in the quarter-plane with infinite group are non-D-finite, and a study of the 5 short
step singular models carried out by Mishna and Rechnitzer [76] and Melczer and
Mishna [71] implies that their generating functions counting walks ending anywhere
are non-D-finite.

An extremely fruitful approach to lattice path enumeration is to weight the steps
of a model by positive real numbers summing to 1 and then interpret the number of
walks of length n ending at a given point as a probability distribution on the set of
walks of length n.Most immediately, one can try to use local or central limit theorems
to estimate these probabilities and derive enumerative results. Extending these limit
theorems, lattice path models in Zd with probabilistically weighted steps can often
be rescaled into continuous objects. The most well known example is that the famous
Brownianmotion process can be obtained [57] as a scaling limit of the simple random
walk on Z with steps {−1,+1}. In higher dimensions, and with varying step sets,
walks on Zd restricted to various cones can be approximated by multi-dimensional
Brownian motion with certain constraints. As a Brownian motion satisfies partial
differential equations instead of the partial discrete differential equations described
by the kernel equation, one can more easily apply the tools of analysis to determine

6After determining an algebraic or differential equation for a truncated series, several techniques can
be used to give confidence that the generating function under consideration satisfies this equation.
In addition to simply computing additional terms of the generating function and verifying that the
additional terms also satisfy the equation, Bostan and Kauers [15, Sec. 2.4] give several algebraic
and analytic heuristics.
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asymptotics7. The enumeration of a lattice path model can then be approached by
approximating walks by Brownian motions whose asymptotics are well understood;
see [35, 83] for classical accounts of the study of randomwalks. Using this approach,
for lattice path models on a large variety of step sets in a wide collection of cones,
including orthants in Rd,

• Denisov andWachtel [32] found the exponential growth ρ and critical exponent α
in the dominant asymptotics Cnαρn for the number of excursions of a model and,
when the step set of the model has vector sum zero, for the number of walks
ending anywhere in the restricting cone;

• Garbit and Raschel [48] found the exponential growth ρ for the number of walks
ending anywhere in the restricting cone;

• Duraj [34] gave a method to determine the exponential growth ρ and critical
exponent α for the number of walks ending anywhere in the restricting cone when
the step set of the model has vector sum pointing outside the cone.

These results are very general, allowing for enumerative information on the non-
singular models studied above, including those with non-D-finite generating func-
tion. We note that the process of approximating a discrete walk by Brownian motion
makes it extremely difficult to exactly determine the asymptotic constant C and a
good bound on the asymptotic error term.

Melczer and Wilson [73] combined the diagonal expressions derived above with
the methods of analytic combinatorics in several variables to determine dominant
asymptotics, including leading constants, for the quadrant models with transcenden-
tal D-finite generating function. Bernardi et al. [7] and Dreyfus et al. [33] examine
the behaviour of short step quadrant models with infinite group, proving some of the
models admit generating functions which are not only non-D-finite but also hyper-
transcendental. Bostan et al. [11] examine three-dimensional short step models in
the non-negative octant, and Bostan et al. [12] generalize the kernel method to study
walks in an orthant with potentially non-short steps; in both cases rational diago-
nal representations for the transcendental but D-finite generating functions which
arise are obtained. Melczer and Mishna [72] and Melczer and Wilson [74] use the
techniques of analytic combinatorics in several variables to find asymptotics for
highly and mostly symmetric walks in any dimension. Gessel and Zeilberger [51]
gave representations for lattice path generating functions in so-calledWeyl chambers
in arbitrary dimension, which include the diagonal representations of Melczer and
Mishna for highly symmetric models inNd . Tate and Zelditch [84] and Feierl [40, 41]
determined asymptotics of walks in Weyl chambers using analytic techniques such
as saddle-point integral computations. Zeilberger [89] and Grabiner andMagyar [52]
contain other work on generating function expressions for walks in Weyl chambers.

7 See Bousquet-Mélou [22, Sect. 2] for a nice discussion on partial discrete differential equations.
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Fig. 4.6 Top: The path pairs in S4: there are four pairs of area three and one pair of area four.
Bottom: The lattice walks inS4: there are four walks of area three and one walk of area four.

Problems

4.1 Generalize Proposition 4.1 to give the generating function of walks returning to
the origin when the starting point p ∈ N is arbitrary. Carefully consider situations
when the integrand in (4.4) may have a pole at x = 0.

4.2 Following the argument in Section 4.1.4, prove there are exactly 79 non-
isomorphic quarter-plane models which are not isomorphic to half-plane models.

4.3 Prove that the multivariate generating function W(z, t) tracking the endpoint
and length of a lattice walks in Nd taking short steps satisfies the functional equa-
tion (4.12). Hint: Decompose a walk of length n as a walk of length n − 1 followed
by a single step, and use the principle of inclusion-exclusion to keep track of walks
leaving the orthant.

4.4 Use Proposition 4.8 and a computer algebra package for creative telescoping to
prove that the generating function A(z) for the number of quarter-plane walks on the
steps S = {(±1, 0), (0,±1)} satisfies the differential equation

z2(4z − 1)(4z + 1)A′′′(z) + 2z(4z + 1)(16z − 3)A′′(t)

+ 2(112z2 + 14z − 3)A′(t) + 4(16z + 3)A(t) = 0.

4.5 Prove the two rational diagonal expressions for the number of quarter-planewalks
on the steps S = {(±1, 0), (0,±1)} given by Propositions 4.8 and 4.9 are equivalent
by using a computer algebra package to determine a D-finite equation satisfied by
the diagonal of their difference.

4.6 A path pair of length n is a pair of paths starting at the origin, consisting of n
unit steps to the north or east, meeting again for the first time after n steps; the
path pairs of length 4 are shown in Figure 4.6. Let Sn denote all pairs of paths of
length n. An open problem several decades old [88] asks whether the elements of Sn
tile a 2n−2 × 2n−2 chessboard without overlap (the elements of Sn are allowed to be
rotated). This problem asks you to use the kernel method to show that the elements
of Sn covers the correct number of squares, 4n−2, for the 2n−2 × 2n−2 chessboard.
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1. LetSn denote the class of lattice walks of length n in Zwhich start at the origin,
take the stepsT = {(1, 1), (1,−1), (1, 0), (1, 0)} (there are two different horizontal
steps), end at height 0, and touch the x-axis only at their beginning and end.
Find a bijection between Sn and Sn, such that p ∈ Sn is paired to an element
w ∈ Sn so that the area of p (number of squares covered) corresponds to area
under the walk w (number of integer points under the walk and above or on the
x-axis); see Figure 4.6.

2. Let G be the trivariate generating function G(y, u, t) =
∑

j,k,n≥0 gjkny
juk tn,

where gjkn denotes the number of walks on n steps of T which end at height
y = j, have area k, and stay above y = 0 except at their starting and (potentially)
ending point. Note that [tn]G(0, u, t) is the generating function of the walks in
Sn by area. Prove that G(0, u, t) = ut2F(0, u, ut), where F(y, u, t) satisfies the
kernel-like equation

F(y, u, t) = 1 + t
(
yu + 2 +

1
yu

)
F(yu, u, t) −

t
yu

F(0, u, t).

Hint: G counts only walks which touch the x-axis in their first and (potentially)
last steps. F is the generating function of a less restricted class.

3. Using this kernel equation, prove that F(0, 1, t) = 2
1−2t+

√
1−4t

and thus show that
F(y, 1, t) = 2

1−2t+
√

1−4t−2ty
. Furthermore, by differentiating the kernel equation

prove that Fu(0, 1, t) = 1−4t+2t2+(2t−1)
√

1−4t
2(1−4t)t2 .

4. Using F(0, 1, t) and Fu(0, 1, t) show that the generating function for the number
of boxes filled by all walks of length n is t2/(1− 4t), proving the elements of Sn
cover the right area to tile a 2n−2 × 2n−2 chessboard.
Hint: What does the partial derivative of G with respect to u represent?
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Part II
Smooth ACSV and Applications





Chapter 5
The Theory of ACSV for Smooth Points

We see. . . that the theory of probabilities is at bottom nothing
but common sense reduced to calculus: it enables us to
appreciate with exactitude that which excellent minds sense by a
kind of instinct for which they are often unable to account.
— Pierre-Simon Laplace

Sweet Analytics, ‘tis thou has ravish’d me...
– Christopher Marlowe (as Doctor John Faustus)

In this chapter we develop the theory of analytic combinatorics in several variables
under a set of assumptions which hold very generally yet simplify our approach. In
the easiest cases, these multivariate results can be obtained through clever applica-
tions of the univariate methods fromChapter 2 together with a classical ‘saddle-point
method’ for asymptotics of certain parametrized integrals. Dealing with more gen-
eral situations will require truly multivariate techniques making use of advanced
results from several areas of mathematics, but one should always keep the univariate
approach in mind: examine the singularities of the generating function under con-
sideration, determine a finite set of those singularities which dictate the exponential
growth of coefficients, then perform a local analysis of the function at those points
to determine dominant asymptotics. Our results apply both to rational functions and
ratios of analytic functions.

We show how to apply our results on a large number of examples in this chap-
ter, and give a detailed treatment of a family of lattice path models in Chapter 6.
Algorithms automating the techniques in this chapter are developed in Chapter 7.

A Simplified Asymptotic Statement

Our main results, stated in Theorems 5.2, 5.3, and 5.4, are asymptotic statements
holding for convergent Laurent expansions of meromorphic functions. These results
are powerful, and very general, but their generality makes stating them slightly cum-
bersome. We thus begin with a simplified result which covers the most common
case appearing in applications. Recall from Definition 3.9 in Chapter 3 that a singu-
larity w of a meromorphic function F(z) is minimal if no other singularity z of F
satisfies |zj | ≤ |wj | for all 1 ≤ j ≤ d where at least one of the inequalities is strict.

Theorem 5.1 Let r ∈ Rd
>0 and let G(z),H(z) ∈ Q[z] be coprime polynomials such

that F(z) = G(z)/H(z) admits a power series expansion F(z) =
∑

i∈Nd fizi. Suppose
that the system of polynomial equations

185



186 5 The Theory of ACSV for Smooth Points

H(z) = r2z1Hz1 (z) − r1z2Hz2 (z) = · · · = rdz1Hz1 (z) − r1zdHzd (z) = 0

admits a finite number of solutions, exactly one of which, w ∈ Cd∗ , is minimal.
Suppose further that Hzd (w) , 0, that the matrix H defined by (5.24) and (5.25)
below has non-zero determinant, and that G(w) , 0. Then, as n→∞,

fnr = w−nrn(1−d)/2
(2πrd)(1−d)/2√

det(H)
−G(w)

wd Hzd (w)

(
1 +O

(
1
n

))
(5.1)

when nr ∈ Nd . As r varies in any sufficiently small neighbourhood N in Rd
>0 the

solution w = w(r) varies smoothly with r. When the above conditions are satisfied
for each w(r) with r ∈ N , the hidden constant in the big-O error in (5.1) can be
chosen independently of r in any compact subset of N .

When the zero set of H contains a finite number of points with the same coordinate-
wise modulus as w, all of which satisfy the same conditions as w, then an asymptotic
expansion of fnr is obtained by summing the right hand side of (5.1) at each point.

When the power series expansion of F(z) contains only a finite number of
negative coefficients, any point w ∈ Cd∗ with H(w) = 0 is minimal if and only
if H(tw1, . . . , twd) is non-zero for all 0 ≤ t < 1.

Theorem 5.1 is a special case of Theorem 5.4 below.

Example 5.1 (Asymptotics of Central Binomial Coefficients)

Consider the power series expansion

F(x, y) =
1

1 − x − y
=

∑
i, j≥0

fi, j xiy j =
∑
i, j≥0

(
i + j

i

)
xiy j .

For r, s > 0 the system of equations

H(x, y) = sxHx(x, y) − ryHy(x, y) = 0

becomes
1 − x − y = −xs + yr = 0,

with solution
(x, y) =

( r
r + s

,
s

r + s

)
.

Theminimal singularities of F(x, y)were described in Chapter 3, where it was shown
that any point (x, y)with x, y > 0 and x+ y = 1 was minimal. Building the matrixH
defined by (5.24) and (5.25), which in the bivariate case is just a constant, shows that
the conditions of Theorem 5.1 are satisfied here, and we calculate

frn,sn ∼
( r + s

r

)rn ( r + s
s

)sn √r + s
√

2rsπ n
.

Section 5.1 goes into great detail on how to derive this expansion.



5 The Theory of ACSV for Smooth Points 187

Below we relax many of the conditions of Theorem 5.1, considering more gen-
eral Laurent expansions and determining an explicit asymptotic expansion of fnr
in decreasing powers of n. In addition, we show that most of our assumptions hold
generically, meaning they hold for all rational functions with numerator and denom-
inator of fixed degree, except those whose coefficients lie in some fixed algebraic set.
Our main results and the necessary surrounding theory are developed in Section 5.2.
Section 5.3 illustrates how the theory is put into practice, including (in Section 5.3.3)
a characterization of how asymptotics of fnr varies with r and an illustration for how
this implies a central limit theorem for series coefficients. Section 5.3.4 concludes
by proving that most of our assumptions hold generically. We make frequent use of
the results and concepts introduced in Chapter 3 throughout.

Setup

As in the univariate case, the analysis begins with the (multivariate) Cauchy integral
formula from Theorem 3.1 (for power series expansions) and Proposition 3.10 (for
more general Laurent expansions) in Chapter 3. Given a meromorphic function F(z)
with absolutely convergent Laurent expansion F(z) =

∑
i∈Zd fizi in some domain

D ⊂ Cd , we fix a direction r ∈ Rd and study asymptotics of the coefficient sequence

fnr =
1
(2πi)d

∫
T (w)

F(z) dz
znr+1

as n → ∞, where T(w) is the polytorus defined by any w ∈ D. In most appli-
cations, F(z) is a rational function and we study asymptotics of its power series
expansion at the origin; in this case T(w) can be taken as any product of circles
sufficiently close to the origin. Although fnr is essentially not defined if nr < Zd , we
will show that asymptotics vary smoothly with r, allowing us to make meaningful
asymptotic statements about fnr even when r has irrational coordinates.

Our first set of results needs only univariate techniques and the following two
facts. The first follows by induction from the univariate complex analysis results
discussed in Chapter 2, while the second is a consequence of the triangle inequality.

Deforming Curves of Integration: Let f (z) be a meromorphic function and
let T(a),T(b) ⊂ Cd be tori in Cd such that f (z) has no singularities with |zj |
between |aj | and |bj | for each 1 ≤ j ≤ d. Then∫

T (a)
f (z)dz =

∫
T (b)

f (z)dz.
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Maximum Modulus Integral Bound: If f (z) is continuous on a con-
tour C ⊂ Cd of finite area, then����∫

C

f (z)dz
���� ≤ area(C) ×max

z∈C
| f (z)|.

We start with a detailed study of the rational function F(x, y) = 1/(1 − x − y),
which lays out the steps we must go through in the general case.

5.1 Central Binomial Coefficient Asymptotics

Let
F(x, y) =

1
1 − x − y

.

In Chapter 3 we saw that F(x, y) admits three distinct convergent Laurent expan-
sions. Here, we begin by determining coefficient asymptotics in the main diagonal
direction r = (1, 1) of the power series expansion

F(x, y) =
∑
i, j≥0

(
i + j

i

)
xiy j,

with domain of (absolute) convergence

D = {(x, y) ∈ C2 : |x | + |y | < 1}.

The Cauchy integral formula implies(
2n
n

)
=

1
(2πi)2

∫
T (a,b)

1
1 − x − y

dxdy
xn+1yn+1 , (5.2)

for any (a, b) ∈ D, which forms the basis of our analysis. We break our argument
into several steps.

Step 1: Bound Exponential Growth

By Corollary 3.2 of Chapter 3, the dominant asymptotic behaviour of a rational
diagonal sequence is given by a finite sum of terms of the form C nα ζn (log n)` ,
where C ∈ C, α ∈ Q, ` ∈ N, and ζ is algebraic. As in the univariate case, the first
step of the analysis is to determine information about the exponential growth

ρ = lim sup
n→∞

| fn,n |1/n.
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In the univariate setting the exponential growth of a sequence is obtained by finding
the minimal modulus of its generating function’s singularities and taking the recip-
rocal. Unfortunately, in dimension two or greater there will always be an infinite
number of singularities ‘closest’ to the origin, with each only giving a bound on the
exponential growth.

In our example |a| + |b| < 1 whenever (a, b) ∈ D, so that���� 1
1 − x − y

���� ≤ 1
1 − |a| − |b|

for all (x, y) ∈ T(a, b). Thus, the maximum modulus integral bound implies(
2n
n

)
=

���� 1
(2πi)2

∫
T (a,b)

1
1 − x − y

dxdy
xn+1yn+1

���� ≤ |ab|−n

1 − |a| − |b|
(5.3)

for all (a, b) ∈ D. Equation (5.3) gives a family of bounds

lim sup
n→∞

(
2n
n

)1/n
≤ |ab|−1 (5.4)

on the exponential growth of the central binomial coefficients, one for each pair of
points (a, b) ∈ D. In fact, allowing (a, b) to approach the boundary ∂D shows that
the exponential growth ρ is bounded above by |ab|−1 for all (a, b) ∈ D.

It is natural to wonder which points give the best upper bound, and whether that
bound is tight. In fact, answering these two questions is usually the hardest step when
studying a multivariate generating function. As the upper bound |ab|−1 decreases as
the coordinates a and b get farther from the origin, the minimum of |ab|−1 on

D = {(a, b) ∈ C2 : |a| + |b| ≤ 1}

occurs on the boundary ofD, where |a|+ |b| = 1. Thus, we want to minimize |ab|−1

subject to |a| + |b| = 1. Examining the function t−1(1− t)−1 for 0 ≤ t ≤ 1 shows the
minimum is achieved when |a| = |b| = 1/2, where |ab|−1 = 4.

Returning to the bound in (5.4), we have shown that for every ε > 0 there exists
a constant Cε > 0 such that (

2n
n

)
≤ Cε (4 + ε)n

for all n ∈ N. Using the fact that the central binomial coefficients have an algebraic
generating function, we have seen in Chapter 2 that(

2n
n

)
=

4n
√
π n

(
1 +O

(
1
n

))
as n→∞, so our upper bound of 4 on the exponential growth is tight.
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Step 2: Determine Contributing Singularities

In order to completely determine asymptotics of this diagonal sequence, we will per-
form a local analysis of F(x, y) near some of its singularities. But which singularities
should we study? Because the minimum of |ab|−1 onD occurs on the boundary ∂D,
and depends only on themoduli of the coordinates, there are singularities of F achiev-
ing this minimum. Since the denominator under consideration is 1 − x − y, the only
singularity of F(x, y) with |x | = |y | = 1/2 is the point σ = (1/2, 1/2).

The Cauchy integrand in (5.2) has exponential growth close to 4n when (x, y) is
near to σ, and has different exponential growth near any other singularity of F(x, y).
The point σ is thus the only singularity of F(x, y) where the growth of the Cauchy
integrand matches our predicted diagonal sequence growth, and therefore the only
singularity where a local analysis of the Cauchy integral could possibly capture the
asymptotic growth of the diagonal coefficients. Following this logic, we attempt to
determine dominant asymptotics by manipulating the Cauchy integral in (5.2) into
an integral whose domain stays near this singularity, then replace F(x, y) by a local
approximation near σ.

Step 3: Localize the Cauchy Integral and Compute a Residue

For any n ∈ N let

I = In =
1
(2πi)2

∫
|x |=1/2

(∫
|y |=1/4

1
1 − x − y

dy
yn+1

)
dx

xn+1 .

Since σ = (1/2, 1/2) lies on the boundary of the domain of convergence ∂D, the
point (1/2, 1/4) lies inD and thus I =

(2n
n

)
. In order to obtain an integral where x is

restricted to a neighbourhood of 1/2, we define

N =
{
|x | = 1/2 : arg(x) ∈

(
−
π

4
,
π

4

)}
and N ′ = {|x | = 1/2} \ N .

Figure 5.1 illustrates the sets N and N ′, and we note that

|1 − x | <
����1 − eiπ/4

2

����︸      ︷︷      ︸
ρ

= 0.7368 . . .

for x ∈ N , and |1− x | ≥ ρ for x ∈ N ′. We now compare I to the ‘localized’ integral

Iloc =
1
(2πi)2

∫
N

(∫
|y |=1/4

1
1 − x − y

dy
yn+1

)
dx

xn+1 .

Our arguments are local, in the sense that replacing N with any smaller neighbour-
hood of 1/2 will not change our results. For fixed x ∈ N ′,
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Fig. 5.1 The domains of integration N and N′, with |1− x | < ρ for x ∈ N and |1− x | ≥ ρ > 1/4
for x ∈ N′.

���� 1
(2πi)

∫
|y |=1/4

1
1 − x − y

dy
yn+1

���� = ����� 1
(2πi)

∫
|y |=1/4

1/(1 − x)
1 − y

1−x

dy
yn+1

�����
=

������[yn]∑j≥0
(1 − x)−(j+1)y j

������
= |1 − x |−(n+1)

≤ ρ−(n+1),

where the series expansion is valid as |y | = 1/4 < |1 − x | when x ∈ N ′. Thus, the
maximum modulus integral bound implies

|I − Iloc | =
1
(2πi)2

∫
N′

(∫
|y |=1/4

1
1 − x − y

dy
yn+1

)
dx

xn+1 ≤
length(N ′)

2π
ρ−(n+1) 2n+1

=
3

8ρπ

(
2
ρ

)n
.

Since 2/ρ ≤ 2.72, this implieswe can replace the integral I with Iloc in our asymptotic
arguments and introduce an error that grows at an exponentially smaller rate than
our diagonal sequence. Our next tactic is to introduce the integral

Iout =
1
(2πi)2

∫
N

(∫
|y |=3/4

1
1 − x − y

dy
yn+1

)
dx

xn+1

whose domain of integration lies outside the domain of convergence D. For x ∈ N ,
the quantity |1 − x | is bounded away from 3/4 so that 1/|1 − x − y | is bounded
when |y | = 3/4. The maximum modulus integral bound then implies the existence
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of a constant C such that

|Iout | ≤ C 2n
(
4
3

)n
= O

((
8
3

)n)
,

which grows exponentially smaller than our diagonal sequence.

Remark 5.1 There are solutions to 1− x− y = 0 with |x | = 1/2 and |y | = 3/4, but no
solution has x ∈ N . This is why we introduce and localize to the neighbourhoodN .

Finally, define

χ = Iloc − Iout

=
−1
2πi

∫
N

1
2πi

(∫
|y |=3/4

1
1 − x − y

dy
yn+1 −

∫
|y |=1/4

1
1 − x − y

dy
yn+1

)
dx

xn+1 .

For any fixed x ∈ N , the function F(x, y) = 1/(1− x − y) has a unique pole between
the curves {|y | = 1/4} and {|y | = 3/4}, at y = 1 − x. Thus, the (univariate) Cauchy
residue theorem discussed in Chapter 2 implies

1
2πi

(∫
|y |=3/4

1
1 − x − y

dy
yn+1 −

∫
|y |=1/4

1
1 − x − y

dy
yn+1

)
= −(1 − x)−(n+1),

for each x ∈ N , and
χ =

1
2πi

∫
N

dx
xn+1(1 − x)n+1 . (5.5)

This gives a good asymptotic approximation of our diagonal sequence, because����(2n
n

)
− χ

���� = |I − (Iloc − Iout)| ≤ |I − Iloc | + |Iout | = O
((

2
ρ

)n)
.

Remark 5.2 The emergence of the integral in (5.5) should not be surprising. In fact,
the binomial theorem implies(

2n
n

)
= [xn] (1 − x)−(n+1) =

1
2πi

∫
|x |=1/2

dx
xn+1(1 − x)n+1 , (5.6)

which is an exact equality instead of an asymptotic approximation. The reason our
argument has an (asymptotically negligible) error is that we restrict to the neighbour-
hoodN of x = 1/2 in order to have the integrand of Iout bounded when |y | = 3/4. In
this example, we can define the domain of integration for y in Iout to be |y | = 3/2+ r
for any r > 0 and the restriction of x to the neighbourhood N of 1/2 becomes
unnecessary; the rest of our argument then yields the exact equality (5.6). The reason
we did not take this approach above is because for general rational (or meromorphic)
functions one must stick to a local analysis near the singularities of interest. We thus
restrict x to the neighbourhoodN and obtain an asymptotically negligible error here
as this argument is the one that generalizes. Chapter 8 provides a detailed asymptotic
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analysis for diagonals of rational functions whose denominators are a product of
linear factors, giving exact equalities such as (5.6).

Step 4: Apply the Saddle-Point Method

Parameterizing the domain of integrationN in (5.5) asN =
{
eiθ/2 : θ ∈ (−π/4, π/4)

}
converts this integral expression for χ into

χ =
4n

2π

∫ π/4

−π/4
A(θ)e−nφ(θ)dθ, (5.7)

where
A(θ) =

1
1 − eiθ/2

and φ(θ) = log
(
2 − eiθ

)
+ iθ.

This is our first example of a Fourier-Laplace integral, whose asymptotics can
be calculated using the saddle-point method and related techniques. To determine
asymptotics we will replace the amplitude function A(θ) and phase φ(θ) in (5.7) by
the leading terms of their expansions

A(θ) = 2 + 2iθ − 3θ2 + · · · and φ(θ) = θ2 + iθ3 + · · · (5.8)

at the origin, after which the resulting integral can be computed explicitly. First, we
restrict the domain of integration in (5.7) to a small neighbourhood of the origin:
if Bn = n−2/5 then (5.8) implies���e−nφ(θ)��� = e−n<(φ)(θ) ≤ e−n

1/5+O(1)

whenever |θ | ≥ Bn, so that∫ π/4

−π/4
A(θ)e−nφ(θ )dθ =

∫ Bn

−Bn

A(θ)e−nφ(θ )dθ +

∫ −Bn

−π/4
A(θ)e−nφ(θ )dθ +

∫ π/4

Bn

A(θ)e−nφ(θ )dθ

=

∫ Bn

−Bn

A(θ)e−nφ(θ )dθ +O
(
e−n

1/5
)
.

For |θ | ≤ Bn the expansions in (5.8) imply

A(θ) = 2+O
(
n−2/5

)
and e−nφ(θ) = e−nθ

2+O(n−1/5) = e−nθ
2
(
1 +O

(
n−1/5

))
,

meaning

χ =
4n

2π

(∫ Bn

−Bn

2e−nθ
2
dθ

) (
1 +O

(
n−1/5

))
. (5.9)

Asymptotics of such an integral over the entire real line is easy to determine: making
the change of variable θ = t/

√
n gives
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−∞

e−nθ
2
dθ = n−1/2

∫ ∞

−∞

e−t
2
dt =

√
π

n
.

Since ∫ ∞

Bn

e−nθ
2
dθ =

∫ ∞

0
e−n(Bn+θ)

2
dθ = e−nB

2
n

∫ ∞

0
e−nθ

2−nBnθdθ

≤ e−nB
2
n

∫ ∞

0
e−θ

2
dθ

= O
(
e−n

1/5
)
,

we can ‘add the tails’ back to the domain of integration in (5.9) while introducing
an exponentially small error, ultimately yielding

χ =
4n

2π

(∫ ∞

−∞

2e−nθ
2
dθ

) (
1 +O

(
n−1/5

))
=

4n
√
πn

(
1 +O

(
n−1/5

))
.

Thus, we have obtained an asymptotic estimate(
2n
n

)
=

4n
√
πn

(
1 +O

(
n−1/5

))
.

A more careful analysis can bring the error term O
(
n−1/5) to O(n−1), and even

determine an asymptotic expansion in powers of n−1. The key properties that allow
for such an analysis are that A and φ are analytic at the origin and

• φ(0) = φ′(0) = 0 while φ′′(θ) , 0 (so that the dominant term in the Taylor series
for φ at the origin is quadratic, leading to a Gaussian-type integral);

• the real part of φ is non-negative on the domain of integration (so that the integral
decays away from the origin);

• φ′(θ) , 0 on the domain of integration unless θ = 0 (so that the origin is the only
point where local behaviour will dictate asymptotics),

although these can be relaxed to differing degrees (especially for univariate integrals).
Good expositions of the asymptotics of univariate saddle-point integrals can be found
in de Bruijn [13] and Flajolet and Sedgewick [16, Sect. VIII], which illustrate a deep,
rich, and well-developed theory, and motivate some of our choices above. Below we
use Proposition 5.3, which gives asymptotics in a generalized multivariate setting.

The miracle which underlies analytic combinatorics in several variables is the
fact that, by making a natural choice of singularities to study–those giving the best
bound on exponential growth–one ends up with a class of integrals which can be
asymptotically approximated1. Under the assumptions of this chapter, when dealing
with rational functions of d variables the Fourier-Laplace integral expressions ob-

1 As we will see, this miracle is due to the Cauchy-Riemman equations.
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tained are d − 1 dimensional. They have no analogue in the univariate case, where
one is finished after computing the residue in Step 3.

5.1.1 Asymptotics in General Directions

Suppose we wish to determine asymptotics of the coefficients frn,sn in a more
general direction r = (r, s) ∈ N2. Because changing the direction r does not affect
the underlying rational function F(x, y), its singular set V, or the power series
domain of convergence D, we have the modified Cauchy integral representation(

rn + sn
rn

)
= frn,sn =

1
(2πi)2

∫
T (a,b)

1
1 − x − y

dxdy
xrn+1ysn+1 (5.10)

for any (a, b) ∈ D. As in our study of the main diagonal, the maximum modulus
integral bound applied to (5.10) gives a bound on the exponential growth

ρ = lim sup
n→∞

| frn,sn |1/n ≤ |a|−r |b|−s

for all (a, b) ∈ D. In order to minimize this upper bound on exponential growth, we
introduce the height function

hr(x, y) = h(x, y) = −r log |x | − s log |y |

and search for the minimum of h(x, y) on ∂D, where |x | + |y | = 1. Writing |x | = t
for 0 ≤ t ≤ 1, we thus search for the minimum of g(t) = −r log t − s log(1 − t)
when 0 ≤ t ≤ 1. Since r, s > 0 the function g(t) goes to infinity as t approaches 0
or 1, and we may find the minimum of g by solving the equation g′(t) = 0. This
implies that the minimum of hr on ∂D occurs when (|x |, |y |) = ( r

r+s ,
s

r+s ), and there
is precisely one singularity with this coordinate-wise modulus, (x∗, y∗) = ( r

r+s ,
s

r+s ).

Remark 5.3 Recall the discussion of polynomial amoebas and the Relog map from
Section 3.3.1 in Chapter 3. If p = log |x | and q = log |y | then

h(x, y) = −r log |x | − s log |y | = −rp − sq = −(r, s) · (p, q).

Thus, minimizing h(x, y) on D corresponds to minimizing the linear function
h̃(p, q) = −(r, s) · (p, q) on the closure of the convex component B = Relog(D)
of the amoeba complement amoeba(1 − x − y)c . Pictorially, for any direction (r, s)
we want to find the point(s) on ∂B where the support hyperplane to B has normal
(r, s); see Figure 5.2. Proposition 3.6 from Chapter 3 implies that every point on
∂B is a minimizer of h̃ for some (r, s) when we relax the condition that r and s are
natural numbers and allow them to take positive real values.

Following the steps outlined above, we note
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Fig. 5.2 The boundary of amoeba(1− x−y) together with the component B of amoeba(1− x−y)c
corresponding to the power series expansion of 1/(1 − x − y). Level sets of the height function h̃
for directions (1, 2) on top, (1, 1) in the middle, and (4, 1) on the bottom are shown, together with
the corresponding minimizer of h̃ on ∂B.

frn,sn = I =
1
(2πi)2

∫
|x |=x∗

(∫
|y |=y∗−ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1

for any sufficiently small ε > 0, and introduce the integrals

Iloc =
1
(2πi)2

∫
N

(∫
|y |=y∗−ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1

Iout =
1
(2πi)2

∫
N

(∫
|y |=y∗+ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1

where N = {|x | = x∗ : arg(x) ∈ (−δ, δ)} for some sufficiently small δ > 0. The
same argument as the main diagonal case shows that both I − Iloc and Iout grow
exponentially slower than I, and we can approximate frn,sn with the integral

χ = Iloc − Iout =
x−rn∗ y−sn∗

2π

∫ δ

−δ
A(θ)e−nφ(θ)dθ, (5.11)

where
A(θ) =

1
1 − x∗eiθ =

r + s
s
+O(θ)

and

φ(θ) = r log
(
x∗eiθ

)
+ s log

(
1 − x∗eiθ

)
− r log(x∗) − s log(y∗)

=
r(r + s)

2s
θ2 +O(θ3).
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Fig. 5.3 Left:Values of the factor Mn =
(
π
π+1

) [nπ]−nπ arising in our determination of asymptotics
near the irrational direction r = (π, 1) for 0 ≤ n ≤ 100, bounded between

(
π
π+1

)1/2 and
(
π
π+1

)−1/2.
Right: The ratio of the coefficient f[nπ],n and its limit behaviour MnAn for 100 ≤ n ≤ 200.

Because χ is a Fourier-Laplace integral satisfying the properties discussed above,
the saddle-point method implies(

rn + sn
rn

)
= frn,sn ∼

( r + s
r

)rn ( r + s
s

)sn ( r + s
s

) 1
2π

∫ ∞

−∞

e−n
(
r (r+s)

2s θ2
)
dθ

=
( r + s

r

)rn ( r + s
s

)sn √r + s
√

2rsπ n
. (5.12)

A close examination of our argument shows that the error term in this approx-
imation varies smoothly with (r, s) and, in particular, our asymptotic result holds
uniformly when (r, s) varies in any compact set. This allows us to interpret asymp-
totics in a direction (r, s) with non-integer coordinates as the limit of asymptotics
in rational directions approaching (r, s), in a manner specified precisely by Proposi-
tion 5.9 in Section 5.3.3 below.

Example 5.2 (‘Asymptotics’ in an Irrational Direction)

Although no non-zero multiple of r = (π, 1) contains integer coordinates, when n
is large then nr gets arbitrarily close to vectors with integer coordinates. Let [nπ]
denote the closest integer to nπ and let An denote the asymptotic approximation (5.12)
with r = π and s = 1. Proposition 5.9 below implies

f[nπ],n →
( π

π + 1

) [nπ]−nπ
An

as n→∞, so An determines the asymptotic behaviour of the coefficient with integer
coordinates closest to nr, up to a bounded factor Mn coming from rounding nπ to
an integer. See Figure 5.3 for an illustration.

In fact, writing
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rn + sn

rn

)
=
(rn + sn)!
(rn)!(sn)!

=
Γ(rn + sn + 1)

Γ(rn + 1)Γ(sn + 1)

extends the coefficients
(rn+sn

rn

)
to all (r, s) ∈ R2

≥0 using the gamma function Γ(z)
discussed in the appendix to Chapter 2. The asymptotic behaviour of the gamma
function (which can be derived using its integral definition and the saddle-point
method) shows that this ratio has asymptotics matching (5.12).

Remark 5.4 If r < 0 or s < 0 then h(x, y) = −r log |x | − s log |y | is unbounded from
belowonD, as h(x, y) approaches negative infinitywhenever x → 0 or y → 0. Going
back to the bound | frn,sn | ≤ |a|−rn |b|sn for (a, b) ∈ D implies frn,sn decays faster
than any exponential function, meaning the sequence is eventually zero due to the
constraints on asymptotic growth for rational diagonals. In particular, our asymptotic
argument verifies the trivial fact that the power series expansion of F(x, y) contains
no terms whose indices are arbitrarily large with negative sign. Note that the set R2

≥0
contains all directions r such that some multiple tr with t > 0 lies in the Newton
polygon of 1− x − y at the origin; we generalize this observation in Proposition 5.7.

5.1.2 Asymptotics of Laurent Coefficients

Having studied coefficient asymptotics of the power series expansion of F(x, y) =
1/(1− x − y), we now apply a similar analysis to the other Laurent expansions of F,
derived in Chapter 3. Consider, for instance, the convergent Laurent expansion

1
1 − x − y

=
∑
i, j≥0

(
i
j

)
(−1)j+1y j x−i−1

in the domain D2 = {(x, y) ∈ C2 : 1 + |y | < |x |} (the final Laurent expansion is
the same with x and y swapped). Although the rational function F, and thus its
singular set V, are unchanged, the singularities on the boundary of the domain of
convergence now form the set V ∩ ∂D2 = {(1 + t,−t) : t > 0}. The exponential
growth of coefficients along a direction r = (r, s) ∈ R2 is still determined by the
minimum of the height function

hr(x, y) = −r log |x | − s log |y |

onD2. ParameterizingV∩∂D2 by (x, y) = (1+t,−t) for t > 0, we want to minimize

g(t) = −r log(1 + t) − s log(t).

From the series expansions

g(t) = s log(t−1) − rt + rt2/2 + · · · (t → 0+)

g(t) = −(r + s) log(t) − rt−1 + rt−2/2 + · · · (t →∞),



5.1 Central Binomial Coefficient Asymptotics 199

we see that hr(x, y) is unbounded from below, and thus the sequence fnr,ns is
eventually zero, whenever s < 0 or r + s > 0.

Remark 5.5 Recalling Figure 3.2 and the discussion in Section 3.3.1 of Chapter 3,
this Laurent expansion of F(x, y) corresponds to the vertex (1, 0) of the Newton
polytope N(H) under the mapping described by Proposition 3.12. The set of direc-
tions (r, s) for which (1, 0) + t(r, s) lies in the Newton polytope of 1 − x − y are
exactly those where s > 0 and r + s < 0. Again, we return to this observation in
Proposition 5.7 below.

Suppose s > 0 and r + s < 0, so that the minimum of hr occurs on ∂D.
Solving g′(t) = 0 gives (|x |, |y |) = (x∗, y∗) =

(
1 − s

r+s ,
s

r+s

)
=

(
r

r+s ,
s

r+s

)
, with the

point (x∗, y∗) being the only singularity on ∂D2 with this coordinate-wise modulus.
Note this is the same formula as in the power series case, with different restrictions
on r and s, and that x∗ > 0 while y∗ < 0. Below we will see that the most natural
algebraic techniques compute a set of potential minimizers of hr for all domains of
convergence, after which one must filter the points to determine which are relevant
to the specific Laurent expansion under consideration. This is one reason why a
knowledge of Laurent expansions helps provide an understanding of our asymptotic
methods, even when one only cares about power series expansions.

If (x, y) ∈ D2 then (x, z) ∈ D2 for any z with |z | < |y |, since 1+ |z | < 1+ |y | ≤ |x |.
Thus, for any sufficiently small ε > 0,

frn,sn = I =
1
(2πi)2

∫
|x |=x∗

(∫
|y |= |y∗ |−ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1 .

Again following the argument above, we introduce the integrals

Iloc =
1
(2πi)2

∫
N

(∫
|y |= |y∗ |−ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1

Iout =
1
(2πi)2

∫
N

(∫
|y |= |y∗ |+ε

1
1 − x − y

dy
ysn+1

)
dx

xrn+1 ,

where N = {|x | = x∗ : arg(x) ∈ (−δ, δ)} for some sufficiently small δ > 0. Defin-
ing N ′ = {|x | = x∗} \ N , we note that I − Iloc and Iout grow slowly:

• If a ∈ C with a = |x∗ | and a , x∗ then the radius of convergence of the series
F(a, y) in y is larger than |y∗ |. This shows the existence of τ > |y∗ | such that∫

|y |= |y∗ |−ε

1
1 − x − y

dy
ysn+1 = [y

sn]F(x, y) = O(τ−ns)

for all x ∈ N ′. The maximum modulus bound therefore implies

|I − Iloc | = O(x−rn∗ τ−ns)

will grow exponentially slower than the coefficient sequence under consideration.



200 5 The Theory of ACSV for Smooth Points

• The maximum modulus bound implies Iout = O
(
x−rn∗ (|y∗ | + ε)

−sn
)
, and s > 0.

Thus wemay replace I by Iloc, subtract Iout, and compute a residue to approximate
the coefficient fnr,ns by a Fourier-Laplace integral. In fact, we obtain the same
Fourier-Laplace integral as in (5.11), the only difference from the power series case
being the restrictions on (r, s). Again wemay apply a saddle-point argument to obtain(
−nr − 1

ns

)
(−1)ns+1 = frn,sn ∼

( r + s
r

)rn ( r + s
s

)sn ( r + s
s

) 1
2π

∫ ∞

−∞

e−n
(
r (r+s)

2s

)
dθ

=
( r + s

r

)rn ( r + s
s

)sn ( r + s
s

) √
s

2r(r + s)π n

for s > 0 and r + s < 0. Note that we cannot simplify, for instance,
√

s/(r + s) =
√

s/
√

r + s because s and r + s are negative. Making such invalid simplifications can
result in an asymptotic approximation with incorrect sign.

Remark 5.6 Up to taking care with the leading sign, our asymptotic estimate respects
the binomial identity

(
−nr−1
ns

)
(−1)ns+1 = −

(nr+ns
ns

)
.

5.2 The Theory of Smooth ACSV

We now show that our approach for the central binomial coefficients generalizes to an
amazing degree. This section lays out the basics of analytic combinatorics in several
variables, culminating in Theorems 5.2 and 5.3, while the next section contains
generalizations, further discussion, and results which help apply the theory to real
applications. The necessary background on complex analysis in several variables,
including singularities, Laurent expansions, polynomial amoebas, and diagonals of
analytic functions, was covered in Chapter 3.

Fix a rational function
F(z) = G(z)

H(z)
with G and H coprime polynomials over the complex numbers, and letD denote the
domain of convergence of a Laurent expansion

F(z) =
∑
i∈Zn

fizi

corresponding to a component B = Relog−1(D) of the amoeba complement
amoeba(H)c . We determine asymptotics of a sequence fnr for indices nr ∈ Zd
as n → ∞. By deriving asymptotic results which vary smoothly as the direction r
moves in some open set, we will be able to interpret ‘asymptotics’ of fnr for nr < Zd
through a limiting procedure made explicit in Section 5.3.3.
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Unless otherwise noted a statement involving fnr is interpreted to hold
when n ∈ N and nr ∈ Zd , so that the coefficient is well-defined.

We often assume that r contains no zero coordinate: if, say, rd = 0 then the r-
diagonal of F(z) is the r̂-diagonal of [z0

d
]F(z), equal to the r̂-diagonal of F(ẑ, 0)when

the series expansion F contains no terms with a negative exponent of zd . Recalling
the notation R∗ = R \ {0} and C∗ = C \ {0} from past chapters, this means r ∈ Rd∗ .
We take F(z) to be a rational function in order to visualize our constructions using
the amoeba of H, but our ultimate results will hold for ratios of analytic functions.

Our arguments revolve around the singularities of F(z).

Definition 5.1 (singular variety and square-free part) Given complex functions
f1, . . . , fd , we write V( f1, . . . , fd) to denote their set of common solutions in Cd .
The set of singularities of F(z), denoted V, is known as its singular variety; by
Proposition 3.2 in Chapter 3 the singular varietyV is the zero setV(H). BecauseV
depends only on the irreducible polynomial factors of H, and not on theirmultiplicity,
we let Hs denote the square-free part of H, equal to the product of its distinct
irreducible polynomial factors over the complex numbers. The square-free part of H
can be computed in any computer algebra system, either by completely factoring H
or through more efficient specialized methods.

The minimal singularities of F, which are those on the boundary of the domain of
convergence, form the setV ∩ ∂D.

Remark 5.7 We note that V = V(H) = V(Hs). The algebraic properties of Hs

better capture the geometry ofV, which will be useful in our calculations.

This chapter deals with multivariate generating functions whereV is a complex
manifold near the singularities of F which dictate coefficient asymptotics.

Definition 5.2 (smooth points) A smooth point of V is an element of V where at
least one partial derivative of Hs does not vanish. If every point ofV is smooth then
we sayV is smooth.

Although not required for most of our arguments, some differential geometry can
help motivate and explain our constructions, and the necessary background material
can be found in Griffiths and Harris [18, Ch. 0] if desired. For instance, the implicit
function theorem (Proposition 3.1 in Chapter 3) impliesV is a complex manifold in
some neighbourhood of w ∈ V whenever w is a smooth point.

Step 1: Bound Exponential Growth

As usual, we begin with the Cauchy integral formula

fnr =
1
(2πi)d

∫
T (w)

F(z) dz
znr1+1
1 · · · znrd+1

d

, (5.13)
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whereT(w) is the polytorus defined by anyw ∈ D. Applying the maximummodulus
bound to the integral in (5.13) gives a bound

| fnr | =

����� 1
(2πi)d

∫
T (w)

F(z) dz
znr1+1
1 · · · znrd+1

d

����� ≤ Cw |w1 |
−nr1 · · · |wd |

−nrd , (5.14)

where Cw = maxz∈T (w) |F(z)| is finite. The part of this upper bound depending on n
determines a notion of height for the singular points of F.

Definition 5.3 (height functions) The height function of F in the direction r is the
function hr : Cd∗ → R defined by

hr(z) = −
d∑
j=1

rj log |zj |.

Because it is often useful to take logarithms and picture the amoeba of H, we define
the logarithmic height function h̃r : Rd → R by h̃r(x) = hr(ex1, . . . , exn ) = −r · x.
When the direction r is understood we drop subscripts and write h and h̃.

Equation (5.14) implies an exponential growth bound

lim sup
n→∞

| fnr |
1/n ≤ |w1 |

−r1 · · · |wd |
−rd = ehr(w) (5.15)

for every point w in the closure D. When h(z) is unbounded from below on D the
coefficient sequence fnr decays super-exponentially and is thus eventually zero. Oth-
erwise, either the minimum of h(z) onD is achieved and occurs on the boundary ∂D
or, because h̃ is linear and the closed set B is convex, the minimum is not achieved
and there is a limit direction of amoeba(H) which is normal to r.

Because we need local behaviour of F(z) near some of its singularities to
capture the asymptotic growth of its coefficients, we require that hr(z) achieves
its minimum on D. In this chapter we work mainly under conditions which
allow for easy verification of this assumption. Recall the logarithmic gradient
map ∇log f = (z1 fz1, . . . , zd fzd ) from Chapter 3. Proposition 3.13 in that chapter
states that for any minimal point w ∈ V ∩ ∂D there exists λ ∈ Rd and τ ∈ C such
that (∇logHs)(w) = τλ, which helps us find minimizers of the height function.

Proposition 5.1 Let r ∈ Rd∗ . If w ∈ V ∩ ∂D and (∇logHs)(w) = τr with τ , 0
then w is either a minimizer or a maximizer of the map hr(z) on D.

Remark 5.8 If H(z) = Q(z)2 for some polynomial Q then (∇logH)(w) = 0 for
all w ∈ V. This is why we work with the square-free part Hs instead of H.

Proof When τ , 0 then, since r has no zero coordinate, w also has no zero coor-
dinate. Proposition 3.13 in Chapter 3 thus implies that r is the normal vector of a
support hyperplane H of B at Relog(w), meaning all points in B lie on one side
of H . Since the height function is represented by the linear function h̃(x) = −r · x
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after taking the Relog map, Relog(w) is thus a minimizer or maximizer of h̃(x)
on B, depending on whether r points away from or towards B at Relog(w). The
same relationship then holds between w and h(z) on D. Figure 5.2 above gives a
visualization. �

Unfortunately, there may be a minimizer of hr(z) on V ∩ ∂D which does not
satisfy (∇logHs)(w) = τr, even whenV is smooth. Problems occur when the amoeba
of H, which comes from projecting V to real space through the Relog map, does
not accurately reflect the properties of V back in Cd . Section 5.3 discusses these
considerations in more detail, and gives criteria under which the sufficient conditions
in Proposition 5.1 are necessary.

Step 2: Determine Contributing Points

Recalling thatw ∈ ∂D if and only if the intersectionT(w)∩V is non-empty, our next
goal is to get a better handle on the elements ofV which correspond to minimizers
of hr(z). For any singularity w ∈ V, the vector (∇logHs)(w) is a scalar multiple of r
if and only if the matrix

M =
(
(∇logHs)(w)

r

)
=

(
w1Hs

z1
(w) · · · wdHs

zd
(w)

r1 · · · rd

)
is rank deficient, where as usual subscripted variables refer to partial derivatives.
This happens precisely when all 2 × 2 minors of M vanish, giving the system of
equations

Hs(w) = 0
rjw1Hs

z1
(w) − r1wjHs

z j
(w) = 0 (2 ≤ j ≤ d).

(5.16)

Note that any point w ∈ V where Hs
z1
(w) = · · · = Hs

zd
(w) = 0 satisfies (5.16).

Because Hs is square-free, this happens when w is not a smooth point.

Definition 5.4 (smooth critical points) Equations (5.16) are called the smooth crit-
ical point equations, and any solution w ∈ Cd∗ of (5.16) where some Hs

z j
(w) , 0 is

a smooth critical point.

Remark 5.9 (an optional perspective from differential geometry) Suppose V is
smooth and let V∗ = V ∩ Cd∗ denote the submanifold of points in V whose co-
ordinates are non-zero. If we define the map φ(z) = −

∑d
j=1 rj log zj from V∗ to C,

then the points where the differential of this analytic mapping of complex manifolds
vanishes (known as ‘critical points’ in differential geometry settings) are precisely
the points where the projection of ∇φ to the tangent space of V∗ is zero. Since the
tangent space at w ∈ V is the hyperplane whose normal is (∇Hs)(w), the ‘critical
points’ of φ : V∗ → C in the differential geometry sense form the solutions of (5.16)
and thus match our definition of critical points.
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Although we originally derived (5.16) by minimizing the upper bound (5.15)
on exponential growth, the fact that these solutions are critical points of φ means
we will ultimately reduce to integrals which can be asymptotically approximated
by saddle-point methods. This serendipitous property is, in a sense, a result of the
Cauchy-Riemann equations. The complex manifoldV∗ ⊂ Cd defines an underlying
real smoothmanifoldW∗ ⊂ R2d , obtained by setting zj = xj+iyj for real variables xj
and yj . Since hr is the real part of the map φ, the Cauchy-Riemann equations then
imply that the critical points of the real-valued smooth map hr : W∗ → R appearing
in (5.15) are precisely the critical points of the complex analytic map φ : V∗ → C.
See Section 9.3 of Chapter 9 for more details on this interpretation.

By Proposition 5.1, a smooth critical point w is either a minimizer or maximizer
of hr on D, depending on whether r points away from or towards B at Relog(w),
respectively. Only those critical points which are minimizers play a role in our
arguments, so we make the following definition.

Definition 5.5 (smooth contributing points) Any smooth critical point w ∈ Cd∗
where r points away from B, i.e., where x · r < Relog(w) · r for any (and thus
all) x ∈ B is called a smooth contributing point. Whenever D is the power series
domain of convergence and r has positive coordinates, Proposition 3.6 in Chapter 3
implies that any minimal smooth critical point is a smooth contributing point.

By definition, a minimal smooth contributing point w is a minimizer of hr on D.

Example 5.3 (Smooth Critical Points and the Amoeba Contour)

Figure 5.4 shows a sketch of the contour of H(x, y) = 1− x− y−6xy− x2y2 together
with: the components B1, . . . , B5 of amoeba(H)c , the images of the smooth critical
points under the Relog map when r = (1, 1), and the resulting support hyperplanes.
The component B1 = Relog(D1) corresponds to the power series expansion of
1/H(x, y); there is one critical point on ∂D1.

• Since r points away from B1 at this point, it is a minimizer of hr on D1 and is
contributing.

The component B2 = Relog(D2) corresponds to a Laurent expansion of 1/H(x, y);
there are three critical points on ∂D2.

• The single critical point whose image under Relog lies on the bottom left of B2
is a maximizer of hr(z) on D2, since r points into B2 at this point. Thus, this
singularity is not contributing.

• There are two critical points in C2 with the same image σ under Relog, which
lies on the top right of B2. Since r points away from B2 at σ these critical points
are both minimizers of hr on D2, and thus also contributing points.

The component B3 = Relog(D3) also has σ on its boundary, but r points into
B3 at σ so the corresponding critical points are not contributing. Neither of the
remaining domains of convergence have critical points on their boundaries. The
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Fig. 5.4 Points on the contour of H(x, y) = 1 − x − y − 6xy − x2y2, with critical points and
supporting hyperplanes shown. The components of the amoeba complement are labelled B1 to B5.

height function hr is unbounded from below on D3,D4, and D5, meaning the
sequence of diagonal coefficients fn,n is eventually zero in the corresponding Laurent
expansions of 1/H(x, y). The critical point whose image under Relog lies on the
bottom left of B2 is not contributing for any Laurent expansion when r = (1, 1), but
it is a contributing singularity for B2 in the direction r = (−1,−1).

Remark 5.10 Although a smooth contributing point w is a minimizer of hr on D,
and a point where all partial derivatives of the function hr restricted to V vanish,
hr never admits a local minimizer on V itself except for the trivial case when hr is
constant on V. Essentially, the real dimension of V as a manifold is too large to
allow h to have a local minimum (this can be formalized by a maximum modulus
principle for analytic functions in several variables).

Step 3: Localize the Cauchy Integral and Compute a Residue

Minimal points, lying on ∂D, are the singularities to which the domain of integration
in the Cauchy integral (5.13) can be deformed arbitrarily close to. Critical points, on
the other hand, are those around which the Cauchy integral can be asymptotically
approximated. Contributing points are a subset of critical pointswherewewill be able
to introduce additional integrals required for our residue computations while adding
only an asymptotically negligible error. Thus, the existence of minimal contributing
points suggests that these points will be the ones around which local behaviour of F
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will dictate coefficient asymptotics. The analysis is easiest when there are a finite
number of such points.

Definition 5.6 (finite and strict minimality) Aminimal point w ∈ V ∩D is called
finitely minimal if T(w) ∩ V is finite, and strictly minimal if T(w) ∩ V = {w}. In
other words, w is strictly minimal if it is minimal and no other singularity of F has
the same coordinate-wise modulus.

Suppose first that F(z) admits a strictly minimal smooth contributing pointw. Be-
causew is a smooth pointwemay assume,without loss of generality, thatHzd (w) , 0.
Let ρ = |wd | and T = T(ŵ), where we recall the notation ŵ = (w1, . . . ,wd−1).
Since w is contributing, points with ẑ ∈ T and |zd | = ρ − εrd lie in D for ε suffi-
ciently small. In other words, if rd > 0 we need to slightly decrease the modulus of
the dth coordinate of w to move inside D, while if rd < 0 we need to increase the
modulus of the dth coordinate to move inside D.

The implicit function theorem (Proposition 3.1 in Chapter 3) together with strict
minimality of w implies the existence of a neighbourhood N of ŵ in T , an analytic
function g : N → C, and δ > 0 sufficiently small such that for ẑ ∈ N ,

(i) H(z) = 0 if and only if zd = g(ẑ);
(ii) ρ − δ < |g(ẑ)| < ρ + δ;
(iii) if x̂ ∈ T and ρ − δ ≤ |y | ≤ ρ + δ then H(x̂, y) = 0 only if y = g(x̂).

To guide our deformations, let

δs = sgn(rd)δ =

{
δ if rd > 0
−δ if rd < 0

.

As above, we define

I =
1
(2πi)d

∫
T

(∫
|zd |=ρ−δs

F(z) dzd
znrd+1
d

)
dẑ

ẑnr̂+1

Iloc =
1
(2πi)d

∫
N

(∫
|zd |=ρ−δs

F(z) dzd
znrd+1
d

)
dẑ

ẑnr̂+1

Iout =
1
(2πi)d

∫
N

(∫
|zd |=ρ+δs

F(z) dzd
znrd+1
d

)
dẑ

ẑnr̂+1

and

χ = Iloc − Iout

=
−1
(2πi)d

∫
N

(∫
|zd |=ρ+δs

F(z) dzd
znrd+1
d

−

∫
|zd |=ρ−δs

F(z) dzd
znrd+1
d

)
dẑ

ẑnr̂+1 . (5.17)

Our first goal is to show that the coefficients of interest are well-approximated by χ.
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Lemma 5.1 If F admits a strictly minimal smooth contributing point w ∈ Cd∗ in the
direction r ∈ Rd∗ then | fnr − χ | = O(τn) for some τ < |w−r |.

Proof Since w is contributing, fnr = I. Furthermore, since w is contributing and
strictly minimal there exists ε > 0 such that for ẑ ∈ T \N the univariate series, in t,
for F(ẑ, t) converges when |t | = ρesgn(rd )ε . Thus, for any ẑ ∈ T \ N the integral�����∫|zd |=ρ−δs F(z) dzd

znrd+1
d

����� = [tnrd ]F(ẑ, t)
grows exponentially slower than ρ−nrd = |wd |

−nrd , and the maximum modulus
bound implies that

|I − Iloc | =

����� 1
(2πi)d

∫
T\N

(∫
|zd |=ρ−δs

F(z) dzd
znrd+1
d

)
dẑ

ẑnr̂+1

�����
grows exponentially slower than |w−nr |. Finally, since w is contributing every point z
in the domain of integration of Iout has hr(z) > hr(w), so the integral Iout also grows
exponentially slower than |w−nr |. The result then follows from the triangle inequality,
as | fnr − χ | = | fnr − Iloc + Iout | ≤ | fnr − Iloc | + |Iout |. �

The integral χ in Lemma 5.1 can be simplified with a residue computation.
Furthermore, we can obtain a similar asymptotic expansion for a finitely minimal
point by summing asymptotic contributions of this type.

Corollary 5.1 Suppose F(z) admits a finitely minimal smooth contributing point
w ∈ Cd∗ in the direction r ∈ Rd∗ . Suppose further that T(w) ∩ V = {w1, . . . ,wr }

where each wj is a smooth contributing point such that Hs
zd
(wj) , 0. For each j

letNj denote a sufficiently small neighbourhood of wj in T(w) such that there exists
an analytic parametrization zd = gj(ẑ) ofV for ẑ ∈ Nj . Then

fnr =
r∑
j=1

− sgn(rd)
(2πi)d−1

∫
Nj

Rj(ẑ)
ẑnr̂+1 dẑ +O(τn) (5.18)

for some τ < |w−r |, where

Rj(ẑ) = Res
zd=g j (ẑ)

G(z)
znrd+1
d

H(z)
.

Proof Suppose first that w = w1 is strictly minimal, so T(w) ∩ V = {w}. Then for
any fixed ẑ ∈ N the inner integrand of χ defined by (5.17) has a unique pole zd = g(ẑ)
with ρ − δs ≤ |zd | ≤ ρ + δs . Thus, the (univariate) Cauchy residue theorem implies

1
2πi

(∫
|zd |=ρ+δs

F(z) dzd
znrd+1
d

−

∫
|zd |=ρ−δs

F(z) dzd
znrd+1
d

)
= − sgn(rd)R1(ẑ),
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and the result holds. If w is finitely minimal then existence of theNj and gj follows
from the implicit function theorem. Repeating the above argument for the strictly
minimal case with N replaced by the union of the Nj shows that χ is a sum of
residue integrals, each of which simplifies to the stated form. �

Remark 5.11 Corollary 5.1 assumes Hs
zd
(wj) , 0 for each 1 ≤ j ≤ r , meaning

the solutions of H(z) = 0 can be locally parametrized by the same coordinates near
eachwj . If, more generally, the partial derivative Hs

zk
(wj) , 0 then all occurrences of

rd and zd in the jth summand of (5.18) should be replaced by rk and zk , respectively.

Ifw is one of the smoothminimal critical points inCorollary 5.1 thenwemaywrite
H(z) = (zd −g(ẑ))pq(z) for some positive integer p ≥ 1 and analytic function q(z) in
a neighbourhood of w with q(w) , 0. The integer p is the order of the pole zd = g(ẑ),
and may be calculated as the smallest positive integer such that (∂pH/∂zp

d
)(w) , 0.

If H is square-free then p = 1 and

R(ẑ) = Res
zd=g(ẑ)

G(z)
znrd+1
d

(zd − g(ẑ))q(z)
=

G(ẑ, g(ẑ))
g(ẑ)nrd+1q(ẑ, g(ẑ))

=
G(ẑ, g(ẑ))

g(ẑ)nrd+1Hzd (ẑ, g(ẑ))
.

The general formula is messier, but still explicit. To simplify notation, we write ∂k
d

to denote the partial derivative operator which takes a differentiable function f (z)
and returns ∂k

d
( f ) = (∂k f /∂zk

d
)(z), where ∂0

d
( f ) = f (z).

Lemma 5.2 If the order of the pole zd = g(ẑ) near w is p then for all ẑ ∈ N

R(ẑ) = (−1)p+1g(ẑ)−nrd−p
p−1∑
k=0

(−1)k (nrd + p − 1 − k)(p−k−1)

k!(p − k − 1)!
Rj(ẑ), (5.19)

where (a)(b) = a(a − 1) · · · (a − b + 1) denotes the falling factorial for a ∈ R and
b ∈ N, and

Rj(ẑ) = g(ẑ)k lim
zd→g(ẑ)

∂kd

(
(zd − g(ẑ))pF(z)

)
.

Proof Lemma 2.4 in the appendix to Chapter 2 expresses the residue R(ẑ) as the
limit of an order p − 1 derivative. The product rule for derivatives then implies

R(ẑ) = 1
(p − 1)!

lim
zd→g(ẑ)

∂
p−1
d

(
z−nrd−1
d

(zd − g(ẑ))pF(z)
)

=
1

(p − 1)!
lim

zd→g(ẑ)

p−1∑
k=0

(
p − 1
k

)
(−1)p−1−k (nrd + p − 1 − k)(p−1−k)

z
nrd+p−k
d

∂k
d

(
(zd − g(ẑ))pF(z)

)
,

from which (5.19) is obtained by algebraic manipulation. �
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Step 4: Find Asymptotics using the Saddle-Point Method

To convert the expression (5.18) into a form more suitable for asymptotic approx-
imation, we make the change of coordinates zj = wjeiθ j for j = 1, . . . , d − 1.
Let N ′ ⊂ Rd−1 be the image of N under this change of variables, which will be a
neighbourhood of the origin (and can be taken as any sufficiently small neighbour-
hood of the origin without affecting our asymptotic statements). If θ = (θ1, . . . , θd−1)

we define the coordinate-wise product ŵeiθ =
(
w1eiθ1, . . . ,wd−1eiθd−1

)
to lighten

notation. Our next result follows directly from Corollary 5.1 and this change of
variables.

Proposition 5.2 Suppose that r ∈ Rd∗ and F admits a strictly minimal smooth con-
tributing point w such that Hs

zd
(w) , 0. Let g(ẑ) be the analytic parameterization

of zd in terms of ẑ in any sufficiently small neighbourhood of w. If the order of the
pole zd = g(ẑ) is p then for any sufficiently small neighbourhood N ′ of the origin
in Rd−1 there exists an ε > 0 such that

fnr = χ +O
(
(|wr | + ε)−n

)
,

where
χ =

w−nr

(2π)d−1

∫
N′

An(θ) e−nrdφ(θ)dθ (5.20)

for

An(θ) =
(−1)p sgn(rd)
g

(
ŵeiθ )p Γn(ŵeiθ)

φ(θ) = log

(
g

(
ŵeiθ )
g(ŵ)

)
+ i(r̂ · θ)/rd

(5.21)

and

Γn(z) =
p−1∑
j=0

(−1)j (nrd + p − 1 − k)(p−j−1)

j!(p − j − 1)!
g(ẑ)j lim

zd→g(ẑ)
∂
j
d

(
(zd − g(ẑ))pF(z)

)
.

The function Γn(z) is a polynomial of degree p − 1 in n, whose coefficients are
analytic functions in ẑ. If zd = g(ẑ) is a simple pole then p = 1 and

Γn(z) =
G(ẑ, g(ẑ))

Hzd (ẑ, g(ẑ))

is independent of n.
When w is finitely minimal and each point w1, . . . ,wr of T(w) ∩ V is a smooth

contributing point with Hs
zd
(w) , 0 then, up to an error which is exponentially

smaller thanw−nr, the coefficient sequence fnr is a sum of integrals of the form (5.20)
with w replaced by wj and g(ẑ) replaced by a parameterization gj(ẑ) of zd near wj .
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To compute asymptotics of the integral in (5.20) we use the following result, a
multivariate generalization of the saddle-point method. Recall that the Hessian of a
differentiable function g(θ) from Rk to C is the k × k matrix whose (i, j)th entry is
the second partial derivative gθiθ j = ∂2g/∂θi∂θ j .

Proposition 5.3 (Asymptotics of Nondegenerate Multivariate Fourier-Laplace
Integrals) Suppose that the functions P(θ) and ψ(θ) from Rk to C are analytic in
a neighbourhood N of the origin, and let H be the Hessian of ψ evaluated at the
point θ = 0. If r ∈ R is nonzero and

• ψ(0) = 0 and (∇ψ)(0) = 0;
• the origin is the only point of N where ∇ψ is 0;
• H is non-singular (has non-zero determinant);
• the real part of rψ(θ) is non-negative on N ,

then for any nonnegative integer M there exist computable constants K0, . . . ,KM

such that∫
N

P(θ) e−nrψ(θ)dθ =
(
2π
n

)k/2
det (rH)−1/2

M∑
j=0

Kj(rn)−j +O
(
n−M−1

)
, (5.22)

where the square-root of the determinant is the product of the principal branch
square-roots of the eigenvalues of rH (which all have non-negative real part).

The constant K0 = P(0) and if P(θ) vanishes to order L ≥ 1 at the origin then (at
least) the constants K0, . . . ,K b L2 c are all zero. More precisely, define the differential
operator

E = −
∑

1≤i, j≤k

(
H−1

)
i j
∂i∂j

where ∂j denotes differentiation with respect to the variable θ j andH−1 is the inverse
matrix ofH . Let

ψ̃(θ) = ψ(θ) − (1/2)θ · H · θT ,

which is a scalar function vanishing to order 3 at the origin. Then

Kj = (−1)j
∑

0≤`≤2j

E`+j
(
P(θ) ψ̃(θ)`

)
2`+j`!(` + j)!

�����
θ=0

. (5.23)

Due to the order of vanishing of ψ̃, to determine Kj one only needs to calculate
evaluations at 0 of the derivatives of P of order at most 2 j and the derivatives of ψ
of order at most 2 j + 2. The hidden constant in the error term O

(
n−M−1) of (5.22)

varies continuously with the values of the partial derivatives of P and ψ at the origin.

Proof Proposition 5.3 follows from Theorem 2.3 of Pemantle and Wilson [31]. If
the final condition of the proposition is strengthened to require that the real part
of rψ(θ) be positive onN \ {0}, which holds in the situations we encounter, then the
stated conclusions follow from the more elementary Theorem 4.1 of [31]. Hörman-
der [20, Theorem 7.7.5] gives the explicit formula for higher order terms when A
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has compact support (this restriction can be removed when A and φ satisfy certain
growth conditions which hold in most situations we encounter). Section 5 of [31]
shows that the expressions of Hörmander are valid under our stated assumptions. �

We now go through the criteria required to apply Proposition 5.3 to the integral
expression in Proposition 5.2. First, we show criticality is equivalent to the gradient
of φ vanishings.

Lemma 5.3 Suppose w ∈ V is any point such that Hs
zd
(w) , 0, and let zd = g(ẑ)

be the parameterization of zd on V near w. Then the gradient of the function φ(θ)
in (5.21) equals 0 at θ = 0 if and only if w is a smooth critical point.

Proof Fix 1 ≤ k ≤ d − 1. Differentiating the equation Hs(ẑ, g(ẑ)) = 0 with respect
to zk using the chain rule implies gzk (ẑ) = −Hzk (ẑ, g(ẑ))/Hzd (ẑ, g(ẑ)) for ẑ in a
neighbourhood of ŵ. Thus, the derivative of φ with respect to θk is

φθk (θ) =
gzk

(
ŵeiθ )

g
(
ŵeiθ ) iwkeiθk + i

rk
rd
=

−Hzk

(
ŵeiθ, g

(
ŵeiθ ) )

g
(
ŵeiθ ) Hzd

(
ŵeiθ, g

(
ŵeiθ ) ) iwkeiθk + i

rk
rd
.

Substituting θ = 0 and using g(ŵ) = wd shows that vanishing of all partial derivatives
of φ at the origin is equivalent to w satisfying the smooth critical point equations.�

Next, we show minimality implies the real part of rdφ is non-negative.

Lemma 5.4 Suppose w ∈ V is a minimal contributing point such that Hs
zd
(w) , 0,

and let zd = g(ẑ) be a parameterization of zd on V near w. If φ(θ) is defined
by (5.21) then the real part <(rdφ(θ)) ≥ 0 for real θ. If w is finitely minimal then
<(rdφ(θ)) > 0 for θ in any sufficiently small neighbourhood N ′ of the origin.

Proof The real part of rdφ can be expressed as

<(rdφ) = rd log
���g (

ŵeiθ
)��� − rd log |g(ŵ)|,

which is non-negative if and only if |g(ŵ)|rd ≤
��g (

ŵeiθ ) ��rd . Since g
(
ŵeiθ ) gives

the dth coordinate of a point on V whose first d − 1 coordinates lie in T(ŵ), this
inequality holds whenever w is minimal and contributing. If w is finitely minimal
then no other points in any sufficiently small neighbourhood of w in V have the
same coordinate-wise modulus as w, so the inequality is strict. �

The Hessian of φ at the origin may, in general, be singular.

Definition 5.7 (nondegenerate critical points) The critical point w is nondegener-
ate if the Hessian matrixH of φ at the origin is nonsingular.

We require that all minimal contributing points are nondegenerate. Applying the
chain rule, and using that w is a critical point in the direction r, allows for an
explicit determination of the Hessian matrix of φ at the origin in terms of the partial
derivatives of H(z), ultimately giving the following result.
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Lemma 5.5 Supposew is a smooth critical point where Hs
zd
(w) , 0 and let zd = g(ẑ)

be the parameterization of zd onV near w. If, for 1 ≤ i, j ≤ d, we define

Ui, j =
wiwjHs

ziz j
(w)

wdHs
zd (w)

and Vi =
wiHs

zi
(w)

wdHs
zd (w)

=
ri
rd

(5.24)

then the (d − 1) × (d − 1) Hessian matrixH of the function φ in (5.21) evaluated at
the origin has (i, j)th entry

Hi, j =


ViVj +Ui, j − VjUi,d − ViUj,d + ViVjUd,d : i , j

Vi + V2
i +Ui,i − 2ViUi,d + V2

i Ud,d : i = j
(5.25)

Nondegeneracy of a critical point w relates behaviour of hr to the geometry of the
singular setV near w. This regulates the behaviour of nondegenerate critical points.

Lemma 5.6 There are a finite number of nondegenerate smooth critical points in
any direction r ∈ Rd∗ . If w = w(r) ∈ Cd∗ is a nondegenerate smooth critical point
in the direction r ∈ Rd∗ then w is isolated among the set of smooth critical points
in the direction r, and w(r) varies smoothly as r moves in some sufficiently small
neighbourhood of Rd∗ . If H(z) has real coefficients and w ∈ Rd∗ then when r moves
in a sufficiently small neighbourhood each w(r) ∈ Rd∗ .

Proof The fact that a nondegenerate critical point is isolated follows directly from
the complexMorse lemma, which states that after an analytic change of coordinates φ
can be written in aV∗-neighbourhood of w as a sum of squares φ(w)+u2

1+ · · ·+u2
d−1

(see Ebeling [15, Prop. 3.15 and Cor. 3.3]). Bézout’s theorem [8, Thm. 8.2] bounds
the number of isolated solutions of a polynomial system, which form its ‘zero-
dimensional component’. Since any nondegenerate smooth critical point is an isolated
solution of the smooth critical point equations (5.16), such points are finite in number.

Because w is a smooth point we may assume, without loss of generality,
that Hs

zd
(w) , 0, and we let zd = g(ẑ) be the parameterization of zd on V near w.

By a multivariate version of the implicit function theorem [21, Thm. 2.1.2], to show
that w(r) varies smoothly with r it is enough to show that the Jacobian of the smooth
critical point system

rk z1Hz1 (ẑ, g(ẑ)) − r1zkHzk (ẑ, g(ẑ)) = 0 (2 ≤ k ≤ d)

with respect to ẑ is non-singular at ŵ (to lighten notation we now suppose H is
square-free so that Hs = H, otherwise replace H with Hs throughout). The Hessian
of the map φ(θ) = rd log g(ŵeiθ) − rd log g(ŵ) + i(θ · r̂) at θ = 0 is the Jacobian of
the gradient map

(∇φ)(θ) =
i

Ld(θ)

(
rdL1(θ) − r1Ld(θ), . . . , rdLd−1(θ) − rd−1Ld(θ)

)
, (5.26)

where
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Lj(θ) = wjeiθ j Hz j

(
ŵeiθ, g

(
ŵeiθ

))
(1 ≤ j ≤ d − 1)

Ld(θ) = g
(
ŵeiθ

)
Hzd

(
ŵeiθ, g

(
ŵeiθ

))
.

The vector in (5.26) is, up to a multiplicative factor and change of coordinates
zj = wjeiθ j , the smooth critical point system. The chain rule implies this change
of variables does not affect singularity of the Jacobian. Furthermore, the entries
of (∇φ)(θ) vanish when θ = 0 so the factor of i/Ld(θ) simply multiplies the Hessian
of the smooth critical point system by the non-zero constant i/(wdHzd (w)). Thus,
the Jacobian determinant of the smooth critical point system at a critical point w is,
up to a non-zero factor, the Hessian determinant of φ at θ = 0, which by definition is
nonzero whenw is non-degenerate.When all quantities are real, the implicit function
theorem implies the critical point w(r) is also real. �

Weare now ready to state themain asymptotic results of this section. Theorems 5.2
and 5.3 follow directly from applying Proposition 5.3 to Proposition 5.2 under our
assumptions, taking Lemmas 5.3 to 5.6 into account. The easiest, and most common,
situation is when the minimal contributing point is a simple pole. We state this result
separately in order to be as explicit as possible.
Theorem 5.2 (Smooth Asymptotics for Simple Poles) Suppose that the rational
function F(z) = G(z)/H(z) admits a nondegenerate strictly minimal smooth con-
tributing point w ∈ Cd∗ in the direction r ∈ Rd∗ , such that Hzd (w) , 0. Then for any
nonnegative integer M there exist computable constants C0, . . . ,CM such that

fnr = w−nrn(1−d)/2
(2π)(1−d)/2√

det(rdH)
©«

M∑
j=0

Cj(rdn)−j +O
(
n−M−1

)ª®¬ , (5.27)

where the matrixH is defined in (5.25), the square-root of the determinant is given
by the product of the principal branch square-roots of the eigenvalues of rdH , andCj

equals the constant Kj defined by (5.23) when

P(θ) =
− sgn(rd) G

(
ŵeiθ, g

(
ŵeiθ ) )

g
(
ŵeiθ ) Hzd

(
ŵeiθ, g

(
ŵeiθ ) )

and

ψ(θ) = log

(
g

(
ŵeiθ )
g(ŵ)

)
+ i(r̂ · θ)/rd .

The leading constant C0 in this series has the value

C0 =
− sgn(rd)G(w)
wd Hzd (w)

,

which is nonzero whenever G(w) , 0. The asymptotic expansion (5.27) holds uni-
formly in neighbourhoods R ⊂ Rd∗ of r where there is a smoothly varying non-
degenerate strictly minimal contributing point such that Hzd does not vanish. In
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other words, if w(s) ∈ Cd∗ is the contributing point in direction s ∈ R then there
exists B > 0 such that������ fns − w(s)−nsn(1−d)/2

(2π)(1−d)/2√
det(sdH s)

M∑
j=0

Cs
j (sdn)−j

������ ≤ B |w(s)−ns | n(1−d)/2−M−1

for all n ∈ N and s ∈ R with ns ∈ Zd , where Cs
j and H

s are calculated from the
contributing point w(s) as above.

Remark 5.12 Although the constants in (5.27) are defined in terms of partial deriva-
tives of the parameterization g(ẑ) for zd onV, implicitly differentiating the equation
H(ẑ, g(ẑ)) = 0 allows one to determine the partial derivatives of g at ŵ from the
partial derivatives of H at w. Thus, the only information needed to determine the
constants C0, . . . ,CM appearing in Theorem 5.3 are the evaluations at z = w of the
partial derivatives of G(z) up to order 2M and the partial derivatives of H(z) up to
order 2M + 2.

The corresponding asymptotic result for higher order poles is more awkward to
state, although all constants are still explicitly computable.

Theorem 5.3 (Smooth Asymptotics) Suppose that F(z) = G(z)/H(z) admits a
nondegenerate strictly minimal smooth contributing point w ∈ Cd∗ in the di-
rection r ∈ Rd∗ , such that Hs

zd
(w) , 0, and let p be the smallest integer such

that (∂p
d

H)(w) , 0. Then for any nonnegative integer M there exist computable
constants C0, . . . ,CM such that

fnr = w−nrnp−1+(1−d)/2 (2π)(1−d)/2√
det(rdH)

©«
M∑
j=0

Cj(rdn)−j +O
(
n−M−1

)ª®¬ . (5.28)

The constantsCj are determined by expanding An(θ) in Proposition 5.2 as a polyno-
mial in n and applying Proposition 5.3 to the resulting sum of integrals. The leading
constant C0 in this series has the value

C0 =
sgn(rd)(−1)pG(w)p

w
p
d
(∂

p
d

H)(w)
,

which is nonzero whenever G(w) , 0. The asymptotic expansion (5.28) holds uni-
formly in neighbourhoodsR ⊂ Rd∗ of rwhere there is a smoothly varying contributing
point satisfying the same conditions as w.

Remark 5.13 Often H is a pure power of a square-free polynomial, i.e., H(z) = Q(z)p
for some integer p > 1 and square-free polynomialQ. In this case the leading constant
C0 in Theorem 5.3 becomes

C0 =
sgn(rd)(−1)pG(w)
(p − 1)!

(
wdQzd (w)

)p .



5.2 The Theory of Smooth ACSV 215

This variation is commonly in the literature.

When w is a finitely minimal critical point, and each point of T(w) ∩ V satisfies
the conditions of Theorem 5.28, then one can add the asymptotic contributions of
the minimal contributing points to determine dominant asymptotics.

Corollary 5.2 Suppose that F admits a finitely minimal smooth contributing point
w ∈ Cd∗ in the direction r ∈ Rd∗ , let E be the set of points inV∩T(w), and suppose all
elements of E satisfy the conditions of Theorem 5.3. For some nonnegative integer M ,
let Φw denote the right-hand side of (5.28) calculated at w ∈ E (equal to (5.27)
whenever w is a simple pole). Then

fnr =
∑
w∈E

Φw

gives an asymptotic expansion of fnr as n→∞.

Theorem 5.3 gives an asymptotic expansion for the coefficients fnr, but when
the numerator G vanishes at all minimal contributing points it is possible that the
exponential growth of fnr is smaller than what is predicted by these points.

Example 5.4 (Vanishing of Asymptotic Terms)

Consider the rational functions

A(x, y) =
1

1 − x − y
, B(x, y) =

x − 2y2

1 − x − y
, and C(x, y) =

x − y

1 − x − y
,

all of which admit a single contributing singularity σ = (1/2, 1/2) for the main diag-
onal direction r = (1, 1). The main power series diagonal of A(x, y) is the generating
function of the central binomial coefficients

(2n
n

)
, and Theorem 5.2 with M = 2 gives

[xnyn]A(x, y) =
(
2n
n

)
= 4n

(
1

√
πn1/2

−
1

8
√
πn3/2

+
1

128
√
πn5/2

+O
(
n−7/2

))
.

The numerator of B(x, y) vanishes at σ, meaning the constantC0 in (5.27) is zero,
but one can calculate the higher order constants to obtain

[xnyn]B(x, y) = 4n
(

1
4
√
πn3/2

+
3

32
√
πn5/2

+O
(
n−7/2

))
.

Direct inspection shows that the main diagonal of C(x, y) is identically zero.
When applied in an automatic manner, Theorem 5.2 allows one to show for any
natural number M , in a complexity which is polynomial in M , that

[xnyn]C(x, y) = O
(

4n

nM

)
.
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The fact that the diagonal is identically zero can be recovered from the eventual
saddle-point integral by a short argument, see Problem 5.11. Note that C(x, y)
admits the minimal contributing point

(
r

r+s ,
s

r+s

)
in the direction r = (r, s), and that

the numerator of G(x, y) vanishes only when r = s. Thus, the exponential growth
rate of the coefficient sequence frn,sn approaches 4rn as s → r , but there is a sharp
drop down to zero exactly when s = r .

In Section 5.3.4 we show that most of our assumptions, including the condition
that the numerator G(z) does not vanish at the smooth critical points of F, hold
for all rational functions with numerator and denominator of fixed degree, except
those whose coefficients lie in some fixed algebraic set. This helps illustrate why
Corollary 5.2 applies to many problems appearing in the mathematical and scientific
literature.

Remark 5.14 The arguments above also hold for convergent Laurent expansions of
a ratio F(z) = P(z)/Q(z)p of analytic functions P and Q with p ∈ N. Indeed, the
numerator of F only enters into the determination of asymptotics for the integral in
Proposition 5.2, and Proposition 5.3 only requires analyticity of the functions under
consideration. The singular variety V is now the zero set of analytic Q(z), and we
still say w ∈ V is a smooth point if some partial derivative of Q does not vanish
at w. The definition of critical points requires only the logarithmic gradient, and we
again call a critical point contributing if it is a minimizer of the height function hr
onD. None of the integral manipulations above used that G and H were polynomial,
so under these modified definitions our asymptotic results still hold.

Corollary 5.3 Suppose the hypotheses of Corollary 5.2 hold for a ratio F(z) =
P(z)/Q(z)p where p is a positive integer and for some ε > 0 the functions P andQ are
analytic on {z ∈ Cd : hr(z) > hr(w)−ε}. Then the conclusion of Corollary 5.2 holds
when asymptotics are calculated with G(z) = P(z),H(z) = Q(z)p, and Hs(z) = Q(z).

Although we do not discuss what it means for analytic functions P and Q to be
coprime, if P and Q are not coprime and one applies Corollary 5.3 then the resulting
asymptotic expansion still holds. The only downside is that one may find an apparent
minimal critical point by examining V(Q) which is not actually a singularity of
P(z)/Q(z)p . In this case all coefficients Cj in the suspected leading series of the
asymptotic expansion will (correctly) be calculated to be zero.

5.3 The Practice of Smooth ACSV

In this section we show how to apply our newly developed asymptotic methods,
and give ancillary results which help put the theory into practice. For a rational
function F(z) = G(z)/H(z) the smooth critical point equations (5.16) are defined by
polynomial equalities involving the square-free part of H, and are easily manipulated
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with a computer algebra system. As previously noted, in Section 5.3.4 we show that
for ‘most’ rational functions the singular varietyV is everywhere smooth, there are
a finite number of critical points, all of which are nondegenerate, and the numerator
does not vanish at any of these points. Thus, the most difficult step in an asymptotic
analysis is usually determining which, if any, of the algebraically defined critical
points are minimal. We take a full computational perspective on these questions in
Chapter 7, where we develop complete algorithms implementing our results.

When H(z) is simple enough, direct arguments can be used to prove minimality.

Example 5.5 (Asymptotics of a Multinomial Expansion)

Consider the power series expansion of the trivariate function

F(x, y, z) =
1

1 − x − y − z
=

∑
i, j,k≥0

(
i + j + k

i, j, k

)
xiy j zk =

∑
i, j,k

(i + j + k)!
i! j!k!

xiy j zk,

whose power series domain of convergence consists of (x, y, z) ∈ C3 such that
|x | + |y | + |z | < 1. Since H(x, y, z) = 1− x − y − z is square-free, the smooth critical
point equations in direction r = (a, b, c) become

H(x, y, z) = 1 − x − y − z = 0
bxHx(x, y, z) − ayHy(x, y, z) = −bx + ay = 0
cxHx(x, y, z) − ayHz(x, y, z) = −cx + az = 0,

so that there is a single smooth critical point

(x, y, z) = (x∗, y∗, z∗) =
(

a
a + b + c

,
b

a + b + c
,

c
a + b + c

)
.

If any of a, b, c is non-positive then F admits no minimal critical point for its power
series expansion. If a, b, c ∈ Rd

>0 and (x, y, z) satisfy

x + y + z = 1, |x | ≤ x∗, |y | ≤ y∗, |z | ≤ z∗,

then it must be the case that (x, y, z) = (x∗, y∗, z∗), so we have found a strictly minimal
smooth contributing point (since every minimal critical point is contributing for
a power series expansion when r has non-negative coordinates). Equation (5.25)
implies the matrixH in (5.27) equals

H =
©«
a(a+c)

c2
ab
c2

ab
c2

b(b+c)

c2

ª®¬
and Theorem 5.2 gives an asymptotic expansion for the power series coeffi-
cients [xanybnzcn]F(x, y, z) with an, bn, cn ∈ N that begins
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(a + b + c)a+b+c

aabbcc

)n
n−1

(√
a + b + c

2π
√

abc
−
(a + b)(a + c)(b + c)

24π(abc)3/2
√

a + b + c
n−1 + · · ·

)
.

Note that Corollary 2.1 implies the r-diagonal (∆F)(z) is non-algebraic for any r
with positive rational coordinates. If we consider the power series expansion of

Fp(x, y, z) =
1

(1 − x − y − z)p

for p ∈ N then Theorem 5.3 gives an asymptotic expansion for the power series
coefficients [xanybnzcn]Fp(x, y, z) with an, bn, cn ∈ N that begins(

(a + b + c)a+b+c

aabbcc

)n
np−2

(
(a + b + c)p−1/2

(p − 1)! 2π
√

abc
+O

(
1
n

))
.

The exponential growth of the coefficient sequence is independent of p as the singular
variety V, and thus the location of the minimal contributing point (x∗, y∗, z∗), does
not depend on p.

When dealing with Laurent expansions having non-negative coefficients, for in-
stance multivariate generating functions of a combinatorial classes with parameters,
we can use this non-negativity to help characterize minimal points.
Definition 5.8 (combinatorial series and functions) A convergent Laurent expan-
sion of meromorphic F(z) is called combinatorial if this series expansion contains
only a finite number of negative coefficients. If F(z) admits a power series expansion
and this power series expansion is combinatorial, the situation we encounter most
often, then we call F(z) combinatorial. Given z ∈ Cd we write |z| = (|z1 |, . . . , |zd |).
The following result is a multivariate analogue of the Vivanti-Pringsheim Theorem
(Proposition 2.4 in Chapter 2) which greatly aids in determining minimality.

Lemma 5.7 Suppose the Laurent expansion of F(z) with domain of convergence D
is combinatorial. If w ∈ V∗ ∩ ∂D is a minimal point of F(z) with non-negative
coordinates then the point |w| with positive coordinates also lies in V (and is thus
also minimal).

Proof Possibly by adding a Laurent polynomial to F(z), which will not change the
singularities of F away from the coordinate axes, we may assume that all Laurent
coefficients of F are non-negative. Write the convergent Laurent expansion of F
on D as

F(z) =
∑
i∈Zd

fizi.

Since fi ≥ 0 for all i ∈ Zd , the triangle inequality implies

|F(z)| ≤
∑
i∈Zd

fi
��zi�� = F(|z|)
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for all z ∈ D. Because F(z) is meromorphic its singularities are poles, so if w
lies in V ∩ ∂D then there exists a sequence z(n) in D converging to w such
that

��F(z(n))��→∞. But then the sequence |z(n) | lies in D, converges to |w|, and
satisfies F(|z(n) |) → ∞. Thus |w| is also a polar singularity of F, as desired. �

Remark 5.15 If F(z) = G(z)/H(z) is a rational function and B = Relog(D)
then Lemma 5.7 implies ∂B, which describes a portion of the amoeba boundary
∂ amoeba(H), is contained in the image ofV>0 = V ∩ R

d
>0 under the Relog map.

Lemma 5.7 gives a simple criterion to prove that a point is minimal when F(z) is
combinatorial.

Proposition 5.4 Fix a convergent Laurent expansion of rational F(z) with domain
of convergence D, and pick any x ∈ D. A point w ∈ V is minimal if and only if
there does not exist z ∈ V with |z| = t |w| + (1 − t)|x| and t ∈ (0, 1). If this series
expansion is combinatorial then w ∈ V is a minimal point if and only if |w| ∈ V
and the line segment from |x| to |w| in Rd

>0 does not contain an element ofV,

{t |w| + (1 − t)|x| : 0 < t < 1} ∩ V = �.

If the Laurent expansion under consideration is a power series expansion, one can
take x = 0 and thus restrict attention to the line segment from the origin to |w|.

Proof Since x ∈ D its image Relog(x) lies in the (open) component B = Relog(D)
of the amoeba complement. If w is minimal then Relog(w) ∈ ∂B and convexity of B
implies no element of V can lie in the interior of a line segment from |x| to |w|.
If w is not minimal, then Relog(|w|) lies outside of the closed convex set B, so any
continuous path in Rd from Relog(|w|) to the open set B must pass through ∂B.
Since the path

log (t |w| + (1 − t)|x|) , 0 ≤ t ≤ 1

goes from Relog(w) to Relog(x), where the logarithm is taken coordinate-wise, there
exists z ∈ V and t ∈ (0, 1) such that log (t |w| + (1 − t)|x|) = Relog(z). Exponentiat-
ing coordinate-wise then gives |w| = t |z| + (1 − t)|x|.

When F(z) is combinatorial, Lemma 5.7 shows that it is sufficient to consider
only the points inV ∩ Rd

>0 to determine the minimality of w. �

Although Lemma 5.7 can be seen as a multivariate generalization of the Vivanti-
Pringsheim Theorem, its conditions are more restrictive as it requires all coefficients
of the series expansion to be non-negative, not just those in the direction r which
may be of (combinatorial) interest. As mentioned in Chapter 2, it is still unknown
even in the univariate case how to decide when a rational function is combinatorial.
In practice, then, one usually applies these results when F(z) is the multivariate
generating function of a combinatorial class with parameters, or when the form
of F(z) makes combinatoriality easy to prove (for instance, when considering the
power series expansion of F(z) = G(z)

1−J(z) with J(z) a polynomial vanishing at the
origin having non-negative coefficients).
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Example 5.6 (Lattice Path Asymptotics)

In Chapter 4 we saw that the main diagonal of the power series expansion of

F(x, y, t) =
(1 + x)(1 + y)

1 − t xy(x + y + 1/x + 1/y)

is the generating function for the number of lattice walks starting at the origin,
taking the steps (±1, 0), (0,±1), and staying in the first quadrant. The denominator
is square-free, and the singular variety V is smooth as the partial derivative of the
denominator with respect to t does not vanish at any points ofV. Furthermore, F is
combinatorial. The critical point equations imply that there are two critical points,

σ = (1, 1, 1/4) and % = (−1,−1,−1/4).

Proposition 5.4 implies σ and % are minimal critical points: if (x, y, t) ∈ V with
0 < x, y ≤ 1 and one of the upper inequalities is strict then

|t | =
���� 1
x2y + xy2 + y + x

���� > 1/4.

Furthermore, if |x | = 1 and |y | = 1 for x, y ∈ C then the triangle inequality implies

|x2y + xy2 + x + y | = 4

only if xy2, x, x2y, and y have the same argument. Thus, x2 and y2 must be real
with modulus 1 and a quick check shows the only other point of V satisfying this
condition is %. We have shown these critical points are finitely minimal.

Since the numerator G(x, y) = (1 + x)(1 + y) vanishes (to order 2) when
(x, y, t) = %, Corollary 5.2 implies only σ contributes to the dominant asymptotics
of the diagonal sequence. The contributions from each minimal critical point begin

Φσ = 4n
(

1
πn
−

6
πn2 +

19
2πn3 −

121
12πn4 +O

(
1
n5

))
Φ% = (−4)n

(
1
πn3 −

9
2πn4 +O

(
1
n5

))
.

Note that the presence of twominimal critical points leads to periodicity in the higher
order asymptotic terms,

fn,n,n =
4n

πn

(
4 −

6
n
+

19 + 2(−1)n

2n2 −
63 + 18(−1)n

4n3 +O
(

1
n4

))
.

More examples from lattice path enumeration, and additional details on this example,
are discussed in Chapter 6.
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The algebraic structure of the series terms with non-zero coefficients can also
help determine when a minimal point is strictly minimal.

Definition 5.9 (aperiodic series) A power series P(z) =
∑

n∈Nd pnzn is called ape-
riodic if every element of Zd can be written as an integer linear combination of the
exponents {n ∈ Nd : pn , 0} appearing in P.

Proposition 5.5 Suppose F(z) = G(z)/H(z) is a ratio of functions G and H which
are analytic on Cd . If H(z) = 1 − P(z) for some aperiodic power series P with
non-negative coefficients then every minimal point of the power series expansion of
F(z) is strictly minimal and has positive real coordinates.

Proposition 5.5 is often applied when F(z) is a rational function (so P is a polynomial
with non-negative coefficients).

Proof Suppose w is a minimal point and for each 1 ≤ j ≤ d write wj = xjeiθ j

with xj > 0 and θ j ∈ R. Let pn denote the coefficient of zn in P(z). Then

1 = |P(w)| =

����� ∑
n∈Nd

pnxnei(n·θ)

����� ≤ ∑
n∈Nd

pnxn,

where equality holds throughout only if P(z) is a monomial or n ·θ = 0 for all n ∈ Nd

such that pn , 0. Thus, either θ = 0 or P(z) is not aperiodic. �

Example 5.7 (Lonesum Matrices)

A lonesum matrix is a matrix with entries in {0, 1} that is uniquely determined by
its row and column sums; the enumeration of lonesum matrices finds application
in biology [27] and algebraic statistics [19]. If Bn,k denotes the number of n × k
lonesum matrices then Brewbaker [7] proved the generating function expression

F(x, y) =
∑
n,k≥0

Bn,k
xn

n!
yk

k!
=

ex+y

ex + ey − ex+y
.

Since the denominator under consideration has the form H(x, y) = 1−P(x, y)where

P(x, y) = 1 − ex − ey + ex+y =
∑
k≥1

k−1∑
j=1

x j yk−j

j!(k − j)!

is aperiodic, Proposition 5.5 implies all minimal points of the power series expansion
of F(x, y) are positive and strictly minimal. Furthermore, if H(x, y) = 0 then y =

x − log(ex − 1) is a decreasing function of x > 0 so every point with positive
coordinates is minimal (decreasing x > 0 and staying in the singular variety V
means increasing y). Manipulating the smooth critical point equations (5.16) in the
direction r = (r, s) shows that (x, y) is a critical point in the direction r if and only if
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r
s
=

x
(1 − ex) log(1 − e−x)

and
s
r
=

y

(1 − ey) log(1 − e−y)
.

Since the function f (t) = t
(1−et ) log(1−e−t ) has positive derivative for t > 0, goes

to 0 as t → 0, and goes to infinity as t → ∞, f is a bijection from the positive real
line to itself. Thus, in any direction r = (r, s) with positive coordinates there is a
unique critical point (a, b) where a = a(r, s) = f −1(r/s) and b = b(r, s) = f −1(s/r).
Because F(x, y) is bivariate the Hessian H in (5.25) is a constant, and is non-zero
at any point with positive coordinates. Finally, since we consider a power series
expansion in directions with positive coordinates the minimal critical point (a, b) is
always contributing. Corollary 5.3 thus implies

Brn,sn =
a(r, s)−rnb(r, s)−sn

√
n

(rn)!(sn)!√
2πsae−a(be−b + ae−a − ab)

(
1 +O

(
n−1

))
for all r, s > 0. Additional details on this example can be found in Khera et al. [26].
The approach presented here is partiallymodeled onwork of Andrade et al. [12], who
studied a related generating function arising in permutation statistics. Problem 5.3
asks you to find asymptotics for this related generating function.

5.3.1 Existence of Minimal Critical Points

Because minimal contributing points are crucial to our asymptotic results, we now
study when they do (or do not) exist. First, they may not exist for a somewhat trivial
reason: because a minimal contributing point is a minimizer of the height function hr
onD, therewill be nominimal contributing points when hr decreaseswithout bound.
This can only happen in degenerate cases.

Proposition 5.6 Consider the convergent Laurent expansion of rational function
F(z) = G(z)/H(z) on a domainD ⊂ Cd . If the height function hr decreases without
bound on D then the coefficient sequence ( fnr) is eventually zero.

Proof If hr is unbounded from below then the inequality (5.15) implies | fnr | goes
to zero faster than any exponential function. Since the asymptotic behaviour of a
diagonal sequence is constrained by Corollary 3.2 in Chapter 3, this implies fnr is
eventually zero. Alternatively, the conclusion follows from (5.14) and the fact that
Cw grows at most polynomially. �

When studying a diagonal sequence which is not eventually zero, Proposition 5.6
implies the height function is bounded onD. The following result uses the algebraic
properties of polynomial amoebas discussed in Section 3.3.1 of Chapter 3 to help
characterize when a diagonal sequence is identically zero.

Proposition 5.7 Let F(z) = G(z)/H(z) be a ratio of coprime polynomials, letN(H)
be the Newton polytope of H, and let B = Relog(D) be a connected component
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of amoeba(H)c corresponding to the integer point v ∈ N(H) under the mapping
described by Proposition 3.12 in Chapter 3. If v + tr < N(H) for all t > 0 then the
height function hr(z) is unbounded from below on D, and ( fnr) is eventually zero.

Proof Suppose hr is bounded from below on D, so that h̃r(x) = −r · x is bounded
from below on B. Suppose also that y ∈ Rd lies in the recession cone R of B,
meaning that y + b ∈ B for all b ∈ B. Then by induction ny + b ∈ B for all b ∈ B
and n ∈ N. If −r · y < 0 then −r · (ny + b) = n(−r · y) − r · b → −∞ as n → ∞,
contradicting the fact that h̃ is bounded on B. Thus, it must be the case that −r ·y ≥ 0
for all y ∈ R. Proposition 3.12 in Chapter 3 characterizes the recession cone as

R = {x ∈ Rd : x · n ≤ 0 for all n ∈ N(H) − v},

whereN(H) − v is the set {z− v : z ∈ N(H)}. BecauseN(H) is a closed convex set,
if tr < N(H)−v for all t > 0 then there exists y ∈ Rd such that r ·y > 0 and n ·y < 0
for all n ∈ N(H) − v. But this implies y ∈ R and −r · y < 0, a contradiction. Thus,
when hr is bounded from below there exists t > 0 such that tr ∈ N(H) − v. �

Unfortunately, even if hr achieves its minimum on D this minimum need not be
a critical point. In fact, when the series under consideration is not combinatorial it is
possible to construct examples with no critical points although the minimum of hr
on D is achieved and the singular varietyV is smooth.

Example 5.8 (A Diagonal with No Critical Points)

Consider the bivariate function F(x, y) = G(x, y)/H(x, y) = 1/(2 + y − x(1 + y)2)

and letD be the power series domain of convergence of F. Basic algebra shows that
both polynomial systems

H = Hx = Hy = 0 and H = xHx − yHy = 0

have no solutions, so the singular varietyV is smooth but there are no critical points
in the main diagonal direction r = (1, 1). Since the dual cone of the Newton poly-
gonN(H) at the origin is the quadrantR = {(x, y) ∈ R2 : x, y ≤ 0}, Proposition 3.12
in Chapter 3 implies the recession cone of B = Relog(D) is R and B is a closed
convex set contained in some translation of the third quadrant of the plane (see
Figure 5.5). This implies the linear function h̃(p, q) = −p − q achieves its minimum
for (p, q) ∈ B, so the height function h(x, y) achieves its minimum on D.

The set of minimal points can be parametrized as

V ∩ ∂D =

{(
2 + y

(1 + y)2
, y

)
: y ∈

[
−2,−

√
3
]
∩

[
0,
√

3
]}
,

with corresponding logarithmic gradient

(∇logH)
(

2 + y

(1 + y)2
, y

)
= −

(
2 + y, 2 + y −

2
1 + y

)
,
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Fig. 5.5 Left: A subset of the real points in the smooth singular variety V = V(2+ y − x(1+ y)2).
Center: Taking coordinate-wise moduli creates an intersection, which causes h(x, y) to achieve
its minimum on ∂D. Right: The curves in the contour of H corresponding to the real connected
components of V shown on the left, together with amoeba(H) and the component B = Relog(D)
of amoeba(H)c . Although the hyperplane with normal (1, 1) is a supporting hyperplane to B at the
intersection, neither branch of the contour has a tangent line perpendicular to (1, 1).

which is indeed never colinear with (1, 1). Since the logarithmic gradient approaches
a multiple of (1, 1) as y → ∞, one might say there is a (non-minimal) critical point
at infinity in this example; we return to this notion in Section 9.3 of Chapter 9.

The problem is that theminimizers (1/2,±
√

3) of h(x, y) onD come from two dif-
ferent connected components ofV∩R2 which intersect only after taking coordinate-
wise moduli, as shown in Figure 5.5. More generally, one can imagineV wrapping
over itself in complex space so that V is smooth but the boundary of amoeba(H)
is not, in such a way that r is the normal to a supporting hyperplane at B only for
‘unnatural’ reasons due to a non-smooth point (such an occurrence has been called
a ghost intersection in the literature).

This difficulty arises when the behaviour of Relog(V) in Rd does not reflect the
behaviour ofV in Cd . Luckily, this cannot happen in the combinatorial case, where
the points of V with positive real coordinates map onto the points of ∂B by taking
coordinate-wise logarithms.

Proposition 5.8 Consider a combinatorial Laurent expansion of F(z) and let x be a
smooth minimal point inV with positive real coordinates. Then every point in some
neighbourhood of x inV ∩ Rd is a minimal point.

Proof We assume that H is square-free, otherwise replace it with its square-free
part in this argument. Proposition 3.13 in Chapter 3 implies that the minimal point x
is critical in some non-zero direction r ∈ Rd and, perhaps by replacing r with
its negation, we may assume that r points away from B at log(x). Consider the
polynomial system

H(z) = H(tr1 z1, . . . , trd zd) = 0

and assume (without loss of generality) that Hzd (x) , 0. At the solution (z, t) = (x, 1)
the Jacobian of this system with respect to zd and t is



5.3 The Practice of Smooth ACSV 225(
Hzd (x) 0
Hzd (x) r · (∇logH)(x)

)
,

which has non-zero determinant as (∇logH)(x) is a non-zero multiple of r. Thus,
there exist analytic functions g(ẑ) and T(ẑ) parameterizing zd and t near (x, 1). If
no neighbourhood of x in V ∩ Rd contains only minimal points then, since x is
minimal, there exists a sequence of non-minimal points x(n) ∈ V ∩ Rd converging
to x such that H(tr1

n x(n)1 , . . . , trdn x(n)
d
) = 0 is satisfied with tn = 1 (since x(n) ∈ V)

and some 0 < tn < 1 (since x(n) is not minimal). But this contradicts the fact that,
for n sufficiently large, tn → 1 is uniquely determined by T(x(n)1 , . . . , x(n)

d−1). �

Corollary 5.4 Consider a combinatorial Laurent expansion of F(z). If a smooth
point x ∈ Rd

>0 is a local minimizer (or local maximizer) of hr on ∂D then it is a
critical point in the direction r.

Proof If x is a local minimizer of hr on ∂D then by Proposition 5.8 it is a local
minimizer on V ∩ Rd . Thus, the gradient of z 7→ r · log(z) must be normal to V,
giving the critical point equations. If x is a local maximizer of hr then it is a local
minimizer of −hr, and the same argument holds. �

Corollary 5.5 Consider a combinatorial Laurent expansion of rational F(z), and
let x be a smooth minimal point inV ∩ Rd

>0. If a smooth point w ∈ V has the same
coordinate-wise modulus as x, then x is a critical point in some direction r if and
only if w is a critical point in the direction r.

Proof Since x and w are smooth, minimal, and have no zero coordinates, Propo-
sition 3.13 in Chapter 3 implies the existence of r, % ∈ Rd such that x and w are
critical in the directions r and %. In other words, there exist λ, τ ∈ C∗ such that

(∇logH)(x) = λr and (∇logH)(w) = τ%.

Since r and % are uniquely determined (up to non-zero multiple) by x and w, it is
sufficient to show that x is also critical in the direction %. Proposition 3.13 implies
that % is the normal to a support hyperplane of B = Relog(D) at Relog(w) = log(x).
This implies x is a minimizer (or maximizer) of h% on D, and Corollary 5.4 then
implies x is critical in the direction %, as desired. �

Example 5.9 (Asymptotics of Apéry Numbers)

In Section 3.4 we saw the sequence (an) of Apéry numbers, whose generating
function can be expressed as the main diagonal of

F(x, y, z, t) =
1

1 − t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
.

This rational function is combinatorial, and solving the critical point equations gives
two smooth critical points, one of which,
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σ =

(
1 +
√

2,
√

2
2
,

√
2

2
, 58
√

2 − 82

)
,

has positive coordinates. Proposition 5.4 implies that σ is a minimal critical point,
since at any singularity

t =
1

(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
,

and when x, y, and z are positive and real then decreasing any of their values causes
this expression to increase. AsV is smooth and F is combinatorial and admits only
one critical point, Corollary 5.5 immediately implies that F is strictly minimal. Thus,
Theorem 5.2 implies

an =

(
17 + 12

√
2
)n

n3/2

√
48 + 34

√
2

8π3/2

(
1 +O

(
1
n

))
.

Recall that determining such an asymptotic estimate is a key step in Apéry’s proof
of the irrationality of ζ(3).

The generating function of the second sequence of Apéry numbers (cn) can be
written as the main diagonal of

F(x, y, z) =
1

1 − z(1 + x)(1 + y)(1 + y + xy)
.

Again F is combinatorial, and an analogous argument shows

cn =

(
11
2 +

5
√

5
2

)n
n

√
250 + 110

√
5

20π

(
1 +O

(
1
n

))
.

We show how these examples can be completely automated in Chapter 7.

Example 5.10 (Asymptotics of Bar Graphs)

Recall from Section 3.2.2 of Chapter 3 the function F(x, y, z) = z(1−xyz−2xz−yz−x)
1−xyz−xy−xz−yz−x ,

whose power series coefficient bn,k = [xnyk zk]F(x, y, z) counts bar graphs with 2n
horizontal external edges and 2k vertical external edges. In a direction r = (a, 1, 1)
the smooth critical point equations have two solutions, the point

z∗ = (x∗, y∗, z∗) =
(√

a2 + 4 − 2
a

,

√
a2 + 4 − a

2
,

√
a2 + 4 − a

2

)
,

which has positive coordinates, and another point whose coordinate-wise modulus
is larger than z∗. Although the power series expansion of F contains negative coeffi-
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cients, if H(x, y, z) is the denominator of F then the power series expansion of 1/H
is combinatorial and contains the same singular set at F. Thus, z∗ is minimal if the
univariate polynomial p(t) = H(t x∗, ty∗, tz∗) has no root t ∈ (0, 1). A quick analysis
of p(t), which factors as 1 − t times a quadratic polynomial in t, shows that for any
a > 0 the only root of p(t) with t > 0 is t = 1. This proves z∗ is minimal and,
since 1/H is combinatorial and no other critical point has the same coordinate-wise
modulus as z∗, it is strictly minimal. Theorem 5.2 then implies that for all a > 0

ban,n ∼

(√
a2 + 4 − a

2

)2n (√
a2 + 4 − 2

2

)an
Ca

4a2(a2 + 4)πn2 ,

where Ca =
(
(a2 − 2a + 4)

√
a2 + 4 − (a − 2)(a2 + 4)

) √
a2 + 4 − 2

√
a2 + 4. See the

computer algebra worksheet corresponding to this example for more details.

Remark 5.16 The conclusion of Corollary 5.5may fail in the non-combinatorial case.
For instance, consider the main diagonal of F(x, y) = 1/(1+2x)(1− x− y). Although
any point (−1/2, y) with |y | = 1/2 is a singularity with the same coordinate-wise
modulus as the minimal smooth critical point (1/2, 1/2), none of these points are
themselves critical in the main diagonal direction.

Corollary 5.6 Consider a combinatorial Laurent expansion of F(z). Ifw is a smooth
minimal critical point in the direction r then |w| is a smooth minimal critical point
in the direction r. Furthermore, if every point in ∂D ∩V is smooth and F admits
two distinct minimal contributing points a, b ∈ Rd

>0 with positive coordinates in the
direction r, then

ct =
(
at

1b1−t
1 , . . . , at

db1−t
d

)
is a minimal contributing point in the direction r for all 0 ≤ t ≤ 1. In particular,
F admits an infinite number of critical points in the direction r, none of which are
nondegenerate.

Proof The first statement follows from Lemma 5.7 and Corollary 5.5. To prove the
second we note that, by logarithmic convexity of D, the point ct lies in D ∩ Rd>0
for all 0 ≤ t ≤ 1. Proposition 5.1 implies both a and b are minimizers of hr on D,
so hr(a) = hr(b). Thus, for any 0 ≤ t ≤ 1,

hr(ct ) = −
d∑
j=1

rj log
(
at
jb

1−t
j

)
= −t

d∑
j=1

rj log aj − (1 − t)
d∑
j=1

rj log bj

= thr(a) + (1 − t)hr(b)
= hr(a)

is also a minimizer of hr on D. This implies ct is a minimal point for all 0 ≤ t ≤ 1,
since minimizers of hr occur only on ∂D, and Corollary 5.4 implies each ct is a



228 5 The Theory of ACSV for Smooth Points

critical point. Since these critical points are not isolated, Lemma 5.6 implies they
cannot be nondegenerate. �

5.3.2 Dealing with Minimal Points that are not Critical

Determiningminimality of critical points is typically the hardest task in amultivariate
singularity analysis. Even when a critical point w ∈ V is known to be minimal, to
apply Theorem 5.3 or Corollary 5.2 one must determine if T(w) ∩V is finite and, if
so, determine its elements. In the combinatorial case, Corollary 5.5 shows that every
element of T(w) ∩ V is critical, greatly simplifying matters from a computational
viewpoint as critical points are specified by a set of algebraic equations which
usually have a finite number of solutions. Unfortunately, as Remark 7.3 illustrates,
this property does not hold in general for non-combinatorial series expansions.

Thankfully, even if T(w) ∩ V contains non-critical points it turns out only the
critical points matter for asymptotic calculations. The requirement of finite minimal-
ity arose above because we made essentially univariate deformations of the Cauchy
domain of integration, increasing the modulus of each coordinate independently.
Using a genuinely multivariate deformation of the Cauchy domain of integration, it
is possible to deform around non-critical points in T(w). In this sense, only critical
points present true obstructions for deforming the Cauchy domain of integration to
points of lower height.

Theorem 5.4 Consider the convergent Laurent expansion of a rational function F(z)
on a domain D. Suppose there exists w ∈ V ∩ ∂D minimizing hr on D, and that
for some ε > 0 all points of the set

{z ∈ V : hr(z) ≥ hr(w) − ε}

are smooth points ofV. Suppose further that the setW of critical points inV∩T(w)
consists of a finite number of nondegenerate smooth contributing points. Then for
every positive integer M > 0 an asymptotic expansion of fnr is obtained by summing
the right-hand side of (5.28) in Theorem 5.3 at each w ∈ W .

The multivariate deformations required to prove Theorem 5.4 require some tech-
nical overhead, andmost of our applications involve combinatorial rational functions,
so we simply sketch two approaches. The first, contained in Baryshnikov and Pe-
mantle [3, Sect. 5], uses Proposition 3.13 in Chapter 3 to construct a vector field
describing how to deform the Cauchy domain of integration around non-critical
points in T(w). Proposition 3.13 states that for any singularity ζ ∈ V ∩ T(w) there
exist λζ ∈ C∗ and non-zero vζ ∈ Rd such that (∇logH)(ζ ) = λζvζ , and the point ζ is
critical if and only if vζ is parallel to r. Since∇logH is the normal of the tangent space
to the set Ṽ = {x ∈ Cd : H(ex1, . . . , exd ) = 0}, if ζ is not a critical point then the
tangent space to Ṽ at log(ζ ) is a hyperplane whose normal is not parallel to r. Thus,
near any non-critical point in V ∩ T(w) one can locally push the Cauchy domain
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of integration to points of lower height without crossing the singular set. Because
the vector vζ varies smoothly with ζ , it is possible to make a single deformation of
the domain of integration to obtain a contour whose points have height bounded be-
low hr(w), except in arbitrarily small neighbourhoods of the critical points in T(w).
The stated deformation is constructed2 in [3, Cor. 5.5], after which asymptotics can
be determined using the saddle-point methods discussed above [3, Sec. 6].

A second approach, using homological arguments and multivariate residues, is
given by Pemantle and Wilson [32, Thm. 9.4.2]. Under the assumptions of Theo-
rem 5.4, one can use advanced topological arguments to write the Cauchy integral
as a sum of an (asymptotically negligible) Cauchy integral over a domain whose
points have height bounded below hr(w) and a ‘multivariate residue integral’ over a
domain of integration Γ lying inV (this is basically a more general, but less explicit,
version of Corollary 5.1 above). Using a ‘gradient flow’ of the height function h,
created essentially by solving a differential equation, it is possible to deform Γ so
that all points not lying in arbitrarily small neighbourhoods of critical points have
height bounded below hr(w). Pemantle and Wilson were motivated by the study of
Stratified Morse theory, and more recent work of Baryshnikov et al. [1] shows how
to the methods of Stratified Morse characterize asymptotics under conditions which
can be computationally verified. We return to this approach in Chapter 9.

Example 5.11 (Non-Finitely Minimal Critical Point)

Consider the power series expansion of the bivariate rational function

F(x, y) =
1

(1 + 2x)(1 − x − y)

in the main diagonal direction r = (1, 1). The singular variety has one non-smooth
point (x, y) = (−1/2, 3/2), which is not minimal as it has greater coordinate-wise
modulus than σ = (1/2, 1/2). The point σ is still a minimal critical point, but it is
no longer finitely minimal as

V ∩ T(σ) = {(1/2, 1/2)} ∪ {(−1/2, eiθ/2) : θ ∈ (−π, π)}.

Because the non-critical points inV ∩T(σ) have no bearing on the local behaviour
of F(z) near σ, they do not play a role in asymptotics. Theorem 5.4 implies

fn,n =
4n
√
πn

(
1
2
−

1
8n
+

1
256n2 +

5
256n3 −

819
65536n4 +O

(
1
n5

))
.

2 Although the hypotheses of [3, Cor. 5.5] state that all minimizers of hr on D have the same
coordinate-wise modulus, this is not needed under our assumptions. Thanks to Yuliy Baryshnikov
for clarification on the constructions from this paper.
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5.3.3 Perturbations of Direction and a Central Limit Theorem

Because our asymptotic theorems have error terms which remain uniformly bounded
as the direction r undergoes small perturbations, the coefficients under consideration
grow in a predictable manner near fixed directions. In fact, we prove that in many
circumstances the series coefficients scale to a normal distribution when viewed
in the right manner. This behaviour is well known, having been derived in some
of the first major papers on the asymptotic behaviour of multivariate generating
functions [4, 5].

To begin, we examine how the exponential growth in our asymptotic formula
changes when the direction under consideration varies slightly. Because scaling
the direction of interest does not meaningfully change our results (one can recover
asymptotics in the original direction by scaling n in the resulting asymptotic formula)
we scale our direction so its final coordinate equals one.

Lemma 5.8 Suppose rational F(z) = G(z)/H(z) admits a nondegenerate strictly
minimal smooth contributing point w ∈ Cd∗ in the direction m ∈ Rd , scaled so
that md = 1, and suppose Hzd (w) , 0. As r varies in some sufficiently small
neighbourhood of m let z(r) be the smooth critical point in the direction r near z(r),
given by Lemma 5.6. If r = (m̂+ε, 1) where ε = ε(n) is a sequence of points in Rd−1

with each coordinate in o(n−1/3) then

z(r)−nr ∼ w−nm × ŵ−nε exp
[
−n
εTH−1ε

2

]
,

whereH is the non-singular matrix in Lemma 5.5 corresponding to the direction m.

Proof Since Hzd (w) , 0, the implicit function theorem yields an analytic parame-
terization zd = g(ẑ) of zd onV near w. If p(x̂) = log(g(ex1, . . . , exd−1 )) then (x̂, p(x̂))
parametrizes log(V) near the point a = log(w). Letting x(r) = log(z(r)) be the image
of the minimal critical point in direction r after taking coordinate-wise logarithms,
it follows that z(r)−nr = exp[nh̃r(x̂(r))] where h̃r is defined by

h̃r(ŷ) = −r̂ · ŷ − p(ŷ)

for y in a neighbourhood of a. Note that

p(logw1 + iθ1, . . . , logwd−1 + iθd−1) = log(g(w1eiθ1, . . . ,wd−1eiθd−1 ))

equals the function φ in Lemma 5.5 up to a linear function in the θ j . If M denotes
the Hessian matrix of p with respect to the variables x̂ at the origin then, sinceH is
the Hessian of φ at the origin, the chain rule implies M = −H .

Because w is a critical point in direction m, the smooth critical point equations
imply the gradient of p with respect to x̂ is (∇p)(â) = −m̂. Thus, for any ŷ sufficiently
close to â there is a convergent series expansion
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h̃r(ŷ) = h̃r(â) + (m̂ − r̂) · (ŷ − â) − (ŷ − â)T M(ŷ − â)
2

+ · · · .

In fact, for any r sufficiently close tom the logarithmic critical point x(r) is defined as
the unique point approaching a = log(w) such that the gradient of h̃r(x) with respect
to x vanishes. Vanishing of the gradient is equivalent to the system rk = −pxk (x̂)
for 1 ≤ k ≤ d−1, so the Jacobian of r̂ as a function of x̂ is −M . This, in turn, implies
the Jacobian of x̂ as a function of r̂ is −M−1. In particular, when each coordinate
of ε = ε(n) is o(n−1/3) it follows that

x̂(m + ε) = x̂(m) − M−1ε + o(n−2/3) = â − M−1ε + o(n−2/3).

Substituting ŷ = x̂(m + ε) and r̂ = m̂ + ε into the series expansion of h̃r(ŷ) gives

h̃m̂+ε(x̂(m + ε)) = h̃m̂+ε(â) + εT M−1ε −

(
M−1ε

)T M
(
M−1ε

)
2

+ o(n−1)

= −(m · a) − (ε · â) + ε
T Mε

2
+ o(n−1),

and the claimed result follows since M = −H and a = log(w). �

From the smoothly varying behaviour of the exponential growth we are able to
deduce how dominant asymptotics transition around a fixed direction.

Proposition 5.9 (Smooth Variation of Coefficients) Consider a Laurent expansion
of a rational function F(z) = G(z)/H(z), and let m ∈ Rd be a direction with md = 1.
Suppose that for all directions r = (r̂, 1) in some neighbourhood of m there is
a smoothly varying nondegenerate strictly minimal critical point w(r) ∈ Cd∗ such
that Hzd (w(r)) and G(w(r)) are non-zero. If ŝ = ŝ(n) is a sequence of vectors in Zd−1

such that each coordinate of |ŝ − nm̂| is o(n2/3) then

f̂s,n ∼ w−nmn(1−d)/2

(
−G(w)(2π)(1−d)/2

wdHzd (w)
√

detH

)
ŵ−(ŝ−nm̂) exp

[
−
(ŝ − nm̂)TH−1(ŝ − nm̂)

2n

]
, (5.29)

whereH is the non-singular matrix in Lemma 5.5 corresponding to w.

Remark 5.17 If the coordinates of ŝ−nm̂ are uniformly bounded for all n (for instance,
if ŝ is the closest vector to nm with integer coordinates) then Proposition 5.9 implies
the dominant asymptotic behaviour of fŝ,n is the behaviour predicted on the right-
hand side of (5.27) by the vector r = (m, 1) with potentially non-integer (even
irrational) coordinates, up to the bounded multiplicative factor ŵ−(ŝ−nm̂).

Proof Theorem 5.2 implies the existence of a constant B > 0 such that����� fnr − w(r)−nr (2πn)(1−d)/2√
detHw(r)

Cw(r)

����� ≤ w(r)−nrn(1−d)/2−1B,
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Fig. 5.6 Left: The amoeba of H(x, t) = 1 − t(x + 1 + 2/x) with the component B and vector
m = (−1/4, 1) from Proposition 5.10. Right: The values of 4−n f−n/4+ε,n with ε ∈ {−20, . . . , 20}
compared to the limiting curve νn(−n/4 + ε, n) for n = 80.

where Cw(r) andHw(r) approach −G(w)/wdHzd (w) andH , respectively, as r→ m.
If |ŝ − nm̂| is o(n2/3) then r̂ = ŝ/n = m̂ + ε(n) where each coordinate of ε(n)
is o(n−1/3). Thus, r̂→ m̂ as n→∞ and the result follows from Lemma 5.8. �

Although the term ŵ−(ŝ−nm̂) in (5.29) is bounded, its existence prevents us from
knowing exact asymptotic behaviour. When ŵ = 1, however, this term disappears
andwe can bemore precise. The following result states that as n→∞ the coefficients
of fŝ,n approach a multivariate normal distribution around the direction m̂.

Proposition 5.10 (Local Central Limit Theorem) Consider a combinatorial Lau-
rent expansion of a rational function F(z) = G(z)/H(z). Suppose that, in some
direction m with md = 1, there is a nondegenerate strictly minimal smooth con-
tributing point of the form w = (1, t) for some t > 0. If Hzd (w) and G(w) are
non-zero then

sup
ŝ∈Zd−1

n(d−1)/2 ��tn fŝ,n − Cνn(ŝ)
��→ 0 (5.30)

as n→∞, where C = −G(w)/
(
wdHzd (w)

)
and

νn(ŝ) =
(2πn)(1−d)/2
√

detH
exp

[
−
(ŝ − nm̂)TH−1(ŝ − nm̂)

2n

]
forH the non-singular matrix in Lemma 5.5 corresponding to w.

A result of the form (5.30) is often called a local central limit theorem. Prob-
lem 5.7 asks the reader, in essence, to derive ‘the’ classical local central limit theorem
for random variables supported on finite subsets of Zd (slightly generalizing Propo-
sition 5.10 from rational to meromorphic functions removes the restriction of finite
support); see Durrett [14, Ch. 3] for more traditional derivations of central limit
theorems. Before proving Proposition 5.10 we look at a short example, with a more
detailed example following the proof.

Example 5.12 (Local Central Limit Theorem for Weighted Walks)
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Let F(x, y) = 1
1−y(x+1+2/x) be the bivariate generating function

F(x, y) =
∑

i∈Z,n≥0
wi,nxiyn

where wi,n counts the walks on the integer lattice Z starting at the origin, ending
at x = i, and taking steps in the set {−1,−1, 0, 1}, with two distinct steps in the −1
direction (we have two negative steps to break symmetry). This series expansion of
F(x, y) converges in a domain D containing all points with x = 1 and |y | < 1/4;
the image B of D under the Relog map is shown on the left of Figure 5.6. Because
the hypotheses of Proposition 5.10 are satisfied with t = 1/4 and m = (−1/4, 1), the
coefficients of [yn]F(x, y) = (x + 1 + 2/x)n behave like a Gaussian curve around
their maximum value. The right of Figure 5.6 shows the limit curve compared to
actual series coefficients.

Proof (Proposition 5.10) Lemma 5.6 implies there is a non-degenerate smooth criti-
cal pointw(s) varying smoothly with s nearm. Since the series under consideration is
combinatorial, the points w(s) all have positive real coordinates, and Proposition 5.8
implies each is minimal. Since w = w(m) is strictly minimal, so are the w(s) when s
is sufficiently close to m.

We begin by bounding the exponential term in νn. Because (5.25) expresses the
entries ofH by evaluations of derivatives ofH(z) atw ∈ Rd , thematrixH is real. The
classical spectral theorem for real symmetric matrices [22, Thms. 4.1.5 and 4.2.2]
then implies the eigenvalues of H are real and (ẑT ẑ)λmin ≤ ẑTH ẑ ≤ (ẑT ẑ)λmax for
all ẑ ∈ Rd−1, where λmin and λmax are the smallest and largest eigenvalues of H ,
respectively. Since w is strictly minimal, Lemma 5.4 implies the real part of the
function φ(θ) in (5.21), and thus also the term θTHθ in its series expansion at the
origin, is strictly positive when θ , 0. This implies all eigenvalues ofH are positive,
so there exist C1,C2 > 0 such that for any ẑ ∈ Rd−1 and sufficiently large n

exp
[
−nC1ẑT ẑ

]
≤ exp

[
−n

ẑTH ẑ
2

]
≤ exp

[
−nC2ẑT ẑ

]
≤ 1. (5.31)

Now, fix any 1/2 < p < 2/3. If every coordinate of |ŝ − nm̂| is at most np

then (5.30) is (5.29) and holds by Proposition 5.9.We thus assume each coordinate of
|ŝ−nm̂| is at least np and prove both tn fŝ,n and νn(ŝ) approach zero faster than n(1−d)/2.
Under this assumption, (5.31) implies νn(ŝ) ≤ e−C3n

1−2p for some C3 > 0, so νn(ŝ)
approaches zero faster than any fixed power of n. Similarly, if every coordinate of
|ŝ − nm̂| is o(n) then ŝ = nm̂ + nε where every coordinate of ε is o(1); repeating
the argument in the proof of Lemma 5.8 then implies that when the coordinates of
|ŝ − nm̂| are at least np then the exponential growth of tn fŝ,n is at most e−C4n

2p−1 for
someC4 > 0. Finally, if each coordinate of |ŝ−nm̂| grows at least linearly then r̂ = ŝ/n
is bounded away from m̂. Because the series under consideration is combinatorial,
the boundary ∂B of the amoeba complement component corresponding to the series
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Fig. 5.7 Left: The coefficients of [zn]P1(x1, x2, z) approach a one-dimensional normal distribution
as n → ∞. Right: The coefficients of [zn]P2(1, x2, z3, z) approach a two-dimensional normal
distribution, with maximum value at the closest integer to nm, as n→∞.

is a smooth hypersurface near (0, log t)with normalm. Thus, any hyperplane through
(0, log t) with normal r not parallel to m intersects the interior of B. Equation (5.15)
then implies the exponential growth of fnr is strictly less than 1r̂t = t. �

Example 5.13 (A Family of Permutations with Restricted Cycles)

For any d ∈ N let Fd(n) be the set of permutations σ on {1, . . . , n} such that
i − d ≤ σ(i) ≤ i + 1 for all i. Let Fd be the union of the sets Fd(n) for all n ∈ N, and
note that every element of Fd , when written in disjoint cycle notation, has cycles of
length at most d+1. Chung et al. [9] study the combinatorial classes Fd because of a
connection to an algorithm for the generation of random perfect matchings in classes
of bipartite graphs. In particular, those authors prove that the number of permutations
in Fd(n) with ik cycles of length k equals the coefficient [zi11 · · · z

id+1
d+1 tn]P(z, t) in the

power series expansion of the rational function

P(z, t) = P(z1, . . . , zd+1, t) =
1

1 − z1t − z2t2 − · · · − zt+1td+1 .

We now show that the joint distribution for the number of cycles satisfies a central
limit theorem3. The first thing to notice is that the seemingly (d + 1)-dimensional
array of coefficients in [tn]P(z, t) is actually d-dimensional, since knowing the
coefficient [zitn]P(z, t) , 0 and fixing i2, . . . , id+1 and n uniquely determines
i1 = n − 2i2 − · · · − (d + 1)id+1 (see the left side of Figure 5.7). Thus we set z1 = 1
and examine the coefficients of

P(1, z1̂, t) =
1

H(z2, . . . , zd+1, t)
=

1
1 − t − z2t2 − · · · − zd+1td+1 .

To prove a central limit theorem, we start by searching for minimal critical points
which satisfy the hypotheses of Proposition 5.10. To that end, set z2 = · · · = zd+1 = 1

3 Thanks to Persi Diaconis for suggesting this problem.
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and consider the roots of h(t) = H(1, t) = 1−t−t2−· · ·−td+1. Because h(0) is positive,
h(1) is negative, and h′(t) is strictly negative for t > 0, we see that h(t) has a unique
positive root ρ which lies between 0 and 1. At σ = (1, ρ) the logarithmic gradient
of the denominator H(z2, . . . , zd+1, t) equals −(ρ2, . . . , ρd+1, h′(ρ)), meaning σ is a
critical point in the rescaled direction

m =
(
ρ2

h′(ρ)
, . . . ,

ρd+1

h′(ρ)
, 1

)
.

SinceP is combinatorial, it follows fromProposition 5.4 thatσ isminimal. Inspection
of the smooth critical point equations implies that σ is the only critical point in the
direction m so σ is strictly minimal by Corollary 5.4 (alternatively, strict minimality
follows from Proposition 5.5 and aperiodicity of the denominator). Thus, if the d× d
matrixH defined by

Hi, j =


ρi+ j+1h′′(ρ)−ρi+ j (1+i+j)h′(ρ)

h′(ρ)3
: i , j

ρi+ j+1h′′(ρ)−ρi+ j (1+i+j)h′(ρ)−ρih′(ρ)2
h′(ρ)3

: i = j

is non-singular then, as n→∞, Proposition 5.10 implies that the largest coefficients
of [tn]P(1, z1̂, t) occur at the monomials whose exponents are close to the vector nm.
These maximal coefficients approach

An = ρ
−n −(2πn)d/2

ρh′(ρ)
√

detH
,

and

sup
s2,...,sd+1∈N

����� [zs2
2 · · · z

sd+1
d+1 tn]P(1, z2, . . . , zt, t)

An
− νn(s2, . . . , sd+1)

�����→ 0

as n → ∞, where νn(s) = exp
[
−
(s−nm)TH−1(s−nm)

2n

]
. See Figure 5.7 for a plot of

actual series coefficients compared to the limiting distribution when d = 2. Further
details can be found in Melczer [28].

Pemantle and Wilson [32, Sect. 9.6] describe these and additional, ‘weak,’ limit
laws holding under weaker assumptions on F(z). Flajolet and Sedgewick [16, Ch. IX]
give an in-depth treatment of limit laws for bivariate generating functions. Addi-
tional work on limit theorems in combinatorics can be found in Hwang [23, 24],
Wallner [34], and the references therein.
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5.3.4 Genericity of Assumptions

We end this chapter by showing that our assumptions are satisfied by ‘most’ rational
functions, explaining why they frequently hold in practice4.

Definition 5.10 (degrees and algebraic sets) The (total) degree of a monomial zn

with n ∈ Nd is the sum |n|1 = n1 + · · · + nd of its exponents, and the (total) degree
of a polynomial is the maximum degree of its monomials. An algebraic set in Cr is
any set formed by the common zeroes of a collection of r-variate polynomials with
complex coefficients.

The Hilbert basis theorem [10, Sec. 2.5] implies one may always define an algebraic
set by the vanishing of a finite collection of polynomials. Problem 5.12 asks you to
show that there are mδ =

(δ+d
d

)
monomials in C[z] of degree at most δ.

Definition 5.11 (generic properties of rational functions) A property P of poly-
nomials in C[z] holds generically if for every δ ∈ N there exists a proper algebraic
subset Cδ ( Cmδ such that any polynomial of degree δ satisfies P unless the vector
of its coefficients lies in Cδ . A property P of rational functions holds generically if
for every pair δ1, δ2 ∈ N there exists a proper algebraic subset Cδ1,δ2 ( C

mδ1+mδ2

such that any rational function with numerator of degree δ1 and denominator of
degree δ2 satisfies P unless the vector formed by the coefficients of its numerator
and denominator lies in Cδ1,δ2 .

Since the intersection of algebraic sets is algebraic, this definition implies that the
conjunction of generic properties is generic. In this section we prove the following.

Proposition 5.11 Fix r ∈ Rd∗ . Generically, a rational function F(z) = G(z)/H(z)
has a smooth singular variety, H is square-free, F admits a finite number of smooth
critical points in the direction r, each of these critical points is non-degenerate, and
the numerator G does not vanish at any of these critical points.

When at least one of these generically occurring smooth critical points isminimal and
contributing, Theorem 5.4 gives an explicit expression for the dominant asymptotic
term. We require some algebraic tools before proving Proposition 5.11.

Projective Space, Multivariate Resultants, and Generic Smoothness

The idea behind Proposition 5.11 is that our conditions determine an algebraic system
of equations involving both the z variables and the coefficients of G and H. Consider
first the property that the singular varietyV = V(H) is everywhere smooth; if this
property does not hold then the polynomial system

4 Although a large number of examples that come from combinatorial problems have non-generic
behaviour, as we will see in Part III. It is fair to say that some generic properties (like non-
degenerate critical points) hold in most applications while others (such as smoothness at all points
of the singular variety) merely hold for many applications.
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H(z) = Hz1 (z) = · · · = Hzd (z) = 0 (5.32)

has a solution. If H(z) has degree δ, then we can write

H(z) =
∑
|i |1≤δ

cizi, ci ∈ C

where, as above, |i|1 = i1 + · · · + id for indices i ∈ Nd . Instead of taking a fixed
polynomial specified by the coefficients ci ∈ C, we now consider a generic polyno-
mial H with degree δ by taking the coefficients ci as additional variables. In this
sense, we consider H to be an element of the polynomial ring C[c][z] with mδ + d
variables. To show that smoothness is a generic property, one must show that the
system (5.32) only has a solution when the coefficient variables c of H lie in some
algebraic set Cδ ⊂ Cmδ depending only on δ.

Ideally, we would take a solution (c, z) of this system and project it onto the c
variables to obtain an algebraic equation that must be satisfied by the coefficient vari-
ables. Unfortunately, the projection of an algebraic set onto some of its components
need not be algebraic.

Example 5.14 (Projections of Algebraic Sets Need Not Be Algebraic)

Consider the algebraic set

A = V(1 − cx) = {(c, 1/c) : c ∈ C∗} ⊂ C2.

Then the projection of A onto its c coordinate is C∗, which is not an algebraic set as
any polynomial vanishing on C∗ must vanish on all of C. In particular, the projection
is not all of C but the projection also does not lie in a proper algebraic subset of C.

Essentially, this difficulty comes from the fact that Cd is not compact so points
can ‘escape’ to infinity. The solution is to work over a different, compact, space.

Definition 5.12 (projective space) The complex projective space of dimension n,
denoted Pn, consists of all non-zero tuples (x0, . . . , xn) ∈ Cn+1 \ {0} modulo the
equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn) if (x0, . . . , xn) = λ(y0, . . . , yn) for some λ ∈ C∗.

A point (x0, x1, . . . , . . . , xn) ∈ Cn+1 \ {0} defines an equivalence class of the rela-
tionship ∼ which is denoted (x0 : x1 : · · · : xn) ∈ Pn.

In order for the zero set of a polynomial f (x0, . . . , xn) to be well defined over Pn,
it must depend only on an equivalence class (x0 : · · · : xn). In particular, every
monomial in f must have the same degree, so that

f (λx0, . . . , λxn) = λdeg( f ) f (x0, . . . , xn) = 0
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whenever f (x0, . . . , xn) = 0.

Definition 5.13 (homogeneous polynomials and algebraic sets) A polynomial
where every monomial has the same degree is said to be homogeneous. We also
extend our definition of algebraic sets to different spaces. An algebraic set,

• in Pn is any subset of Pn formed by the common zeroes of a collection of (n+ 1)-
variate complex homogeneous polynomials;

• in the Cartesian product Pn × Cm is any subset of Pn × Cm formed by
the common zeroes of a collection of complex polynomials of the form
f (x0, . . . , xn, y1, . . . , ym) which are homogeneous in the x variables (the degree
of each monomial with respect to the x variables only is constant);

• in theCartesian productPn×Pm is any subset ofPn×Pm formed by the common ze-
roes of a collection of complex polynomials of the form f (x0, . . . , xn, y0, . . . , ym)
which are homogeneous in the x variables and the y variables separately.

Again, the Hilbert basis theorem [10, Sec. 2.5] implies one may always define an
algebraic set by the vanishing of a finite collection of polynomials. We introduce
projective space for the following property, called completeness or properness.

Proposition 5.12 Let Pn denote complex projective space of dimension n, and let A
denote either complex or projective space of any dimension. If π : Pn × A → A is
the projection map onto A and V is any algebraic set in Pn × A then π(V) is an
algebraic set in A.

Our proof is based on the one in Mumford [29, Thm. 2.23]. The proof uses
the projective Nullstellensatz, a standard result of algebraic geometry which can be
found in Mumford [29, Cor. 2.3] and Cox et al. [10, Ch. 8.3].

Proof Suppose first that A = Cm. Then V is defined by the vanishing of a finite
collection of polynomials f1(x, y), . . . , fr (x, y) on Pn × Cm where each fj is homo-
geneous in the x variables. For fixed Y ∈ Cm, the projective Nullstellensatz states
that f1(x,Y) = · · · = fr (x,Y) = 0 has a common solution x ∈ Pn if and only if
for every k ∈ N there exists a monomial of degree k that cannot be written as
a C[x]-linear combination of f1(x,Y), . . . , fr (x,Y). We claim that for every k ∈ N
the points Y ∈ Cm for which there exists a monomial of degree k that cannot be
written as a C[x]-linear combination of f1(x,Y), . . . , fr (x,Y) form an algebraic set
of Cm. Since the arbitrary intersection of algebraic sets is algebraic, this proves the
theorem for the case A = Cm. The case A = Pm follows from the case A = Cm
after noting that Pm can be written as the union of the sets Ui = {y ∈ Pm : yi = 1}
for 0 ≤ i ≤ d, each of which is equivalent to Cm.

It remains only to prove our claim. Fix k ∈ N, let V be the vector space of
degree k homogeneous polynomials in C[x], and for 1 ≤ i ≤ r let Vi be the vector
space of homogeneous polynomials of degree k − degx( fi) in C[x], where Vi = (0)
if k < degx( fi). Then for any Y ∈ Cm the map
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φk : V1 × · · · × Vr → V

(g1, . . . , gr ) 7→

r∑
i=1

gi(x) fi(x,Y)

is a linear map between the vector spaces V1 × · · · × Vr and V . After fixing bases
of these vector spaces, the map φk is represented by a matrix MY whose entries are
complex polynomials in Y. There is a monomial of degree k that cannot be written
as a C[x]-linear combination of f1(x,Y), . . . , fr (x,Y) if and only if the map φk is
not surjective, which happens if and only if all maximal minors of MY vanish. The
condition of vanishing minors defines an algebraic set in Cm. �

Proposition 5.12 yields a test for proving genericity of properties of homoge-
neous polynomials. An arbitrary polynomial can be converted into a homogeneous
polynomial through the following process.

Definition 5.14 (homogenization) If f (x, y) is a complex polynomial the homoge-
nization of f with respect to x = (x1, . . . , xn) is the homogeneous polynomial

f̃ (x0, x, y) = xdegx( f )
0 f (x1/x0, . . . , xn/x0, y),

where degx( f ) denotes the degree of f with respect to the x variables only.

Corollary 5.7 Let S be a collection of polynomials in two sets of variables z and c,
of lengths n and m, and let S̃ be the result of homogenizing each polynomial with
respect to the z variables. Suppose there exists a ∈ Cm such that the polynomials
in S̃ have no common root in Pn after the substitution c = a. Then there exists a
proper algebraic subset C ( Cm such that b ∈ C whenever the polynomials in S
have a common root of the form (w, b) ∈ Cn+m for some w ∈ Cn.

Proof The solutions of S̃ over Pn × Cm form an algebraic set, so Proposition 5.12
implies the existence of algebraic C ⊂ Cm such that b ∈ C if and only if there exists a
solution (w0,w, b) of S̃. If (w, b) is a solution of S in Cn+m then (1,w, b) is a solution
of S̃ in Pn × Cm, so b ∈ C. Since S̃ has no solution with c = a, it follows that a < C
and C , Cm. �

Remark 5.18 The point of Corollary 5.7 is the properness condition on C, otherwise
one can trivially take C = Cm. Working over complex space, instead of projective
space, the projection onto the c variables need not be algebraic, so to prove genericity
one must replace the projection by its algebraic closure (the smallest algebraic set it
is contained in). As noted in the example above, the algebraic closure can be larger
than the projection, and can be all of Cm even if the projection is missing points.

We have nowdeveloped the algebraic framework necessary to start proving Propo-
sition 5.11. For instance, the next lemma implies that generically H is square-free
andV = V(H) is smooth.

Lemma 5.9 Generically, the system of equations
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H(z) = Hz1 (z) = · · · = Hzd (z) = 0

has no solution.

Proof Fix the degree δ ≥ 1 of H. Writing

H(z) =
∑
|i |1≤δ

cizi ∈ C[c][z]

as above, we will use Corollary 5.7 to prove the existence of a proper algebraic set
Cδ ( C

mδ such that the system of equations has a solution only if c ∈ Cδ . To show
the existence of such a set it is sufficient to exhibit a polynomial Hδ of degree δ
such that the homogenization of this system of equations has no solution in Pd . If
Hδ(z) = 1 − zδ1 − · · · − zδ

d
then the system of equations becomes

zδ0 − zδ1 − · · · − zδd = −δzδ−1
1 = · · · = −δzδ−1

d = 0,

which has no solution in projective space as 0 < Pd by definition. �

We remark that advanced arguments allow one to be more precise. Given a
collection of polynomials f1(z), . . . , fr (z) of degrees δ1, . . . , δr , respectively, write

fj(z) =
∑
|i |1≤δ j

cj,izi

for all 1 ≤ j ≤ r . Given a polynomial P in the variables {u j,i : |i|1 ≤ δj, 1 ≤ j ≤ r}
we then let P( f1, . . . , fr ) denote the evaluation of P obtained by setting the vari-
able u j,i equal to the coefficient cj,i.

Proposition 5.13 For all positive integers δ0, . . . , δd , there exists an irreducible poly-
nomial Res = Resδ0,...,δd ∈ Z[u j,i], called the multivariate resultant, such that d + 1
homogeneous polynomials f0, . . . , fd ∈ C[z0, . . . , zd] of degrees δ0, . . . , δd have a
common root in Pd if and only if Res( f0, . . . , fd) = 0. The resultant is uniquely
defined by the condition Res(zδ0

0 , . . . , z
δd
d
) = 1.

The techniques used to prove Proposition 5.13, yielding algorithms for calculating
the multivariate resultant, are beyond the scope of our work; see Gelfand et al. [17,
Ch. 13] or Jouanolou [25] for details on Proposition 5.13 and its proof. For an
introductory exposition, and a detailed overview of the computational aspects of the
multivariate resultant, see the excellent treatment in Chapter 3 of Cox et al. [11].
Note that the multivariate resultant is defined for dense generic polynomial systems:
each fj must contain all monomials of degree at most δj , otherwise the resultant may
identically vanish or, less pathologically, may become reducible. Refinements of the
multivariate resultant to polynomials with different support sets are often studied
under the name sparse resultants [11, Ch. 7].



5.3 The Practice of Smooth ACSV 241

The Remaining Properties

Lemma 5.9 implies that generically H is square-free andV = V(H) is smooth. We
now prove that the remaining properties listed in Proposition 5.11 hold generically.

Numerator does not vanish at critical points

Corollary 5.7 implies that generically G does not vanish at the critical points of H if
for every δ1, δ2 ∈ N there exist specific polynomials G and H of degrees δ1 and δ2,
respectively, such that the homogenization of the polynomial system

G(z) = H(z) = r2z1Hz1 (z) − r1z2Hz2 (z) = · · · = rdz1Hz1 (z) − r1zdHzd (z) = 0

has no solution in Pd . If

G(z) = zδ1
1 and H(z) = 1 − zδ2

1 − · · · − zδ2
d

then the system of homogeneous polynomial equations

G = zδ1
1 = 0

H̃ = zδ2
0 − zδ2

1 − · · · − zδ2
d
= 0

−δ2rj z
δ2
1 − δ2r1zδ2

j = 0, j = 2, . . . , n

has no solution in Pd , as z1 = 0 implies zj = 0 for all j.

Critical points are nondegenerate and finite in number

We prove that generically all critical points are nondegenerate; Lemma 5.6 then
implies they are finite in number, finishing off the proof of Proposition 5.11. We may
assume H is square-free, as we have already shown this property holds generically.

Consider the matrix H defined by (5.25) with w = z. After multiplying every
entry of H by z3

d
H3
zd

we obtain a polynomial matrix H̃ whose determinant is an
explicit polynomial D in the variables z and the coefficients of H. Corollary 5.7
implies that to prove all critical points are generically finite it is sufficient to find for
each δ ∈ N a polynomial H of degree δ such that the homogenizations of the d + 1
equations consisting of D = 0 and the smooth critical point equations (5.16) have
no common solution in Pd .

Let us take, again, the trusty polynomial H(z) = 1 − zδ1 − · · · − zδ
d
. Calculating

the quantities in (5.25) and performing some algebraic simplification gives that
det H̃ = (−1)d−1δ4(d−1)(z1 · · · zd−1)

δ zδ(d−1)
d

det M , where M is the (d − 1) × (d − 1)
matrix
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M =

©«

zδ1 + zδ
d

zδ2 zδ3 · · · zδ
d−1

zδ1 zδ2 + zδ
d

zδ3 · · · zδ
d−1

zδ1 zδ2 zδ3 + zδ
d

· · · zδ
d−1

...
...

...
. . .

...

zδ1 zδ2 zδ3 · · · zδ
d−1 + zδ

d

ª®®®®®®®®®®¬
whose off diagonal entries are constant down columns. Problem 5.13 asks you to
prove that the determinant of M is zδ(d−2)

d
(zδ1 + · · · + zδ

d
), so the polynomial

D = (−1)d−1 δ4(d−1)(z1 · · · zd)δ zδ(2d−3)
d

(
zδ1 + · · · + zδd

)
is already homogeneous. The smooth critical point equations become

zδ0 − zδ1 − · · · − zδd = 0

−δrj zδ1 − δr1zδj = 0, j = 2, . . . , d

and the homogenized system has no solution in Pd (the critical point equations imply
each zδj is a non-zero scalar multiple of zδ1 so if the δth powers sum to zero, or any
of them is zero, all of them must be zero).

Problems

5.1 Using Theorem 5.2, find dominant asymptotics of the (1,−2)-diagonal of
F(x, y) = 1/(1 − x − y) when it is expanded as a convergent Laurent series in
the domain D3 = {(x, y) ∈ C2 : 1 + |x | < |y |}, proving minimality of any critical
points and taking care with the signs and square-free roots involved.

5.2 Figure 3.5 in Section 3.3.2 of Chapter 3 displays amoeba(1− x− y− xy3), whose
complement inR2 contains four components. Let F(x, y) = 1/(1−x−y−xy3) and, for
each component of the amoeba complement, determine the directions r = (r, s) ∈ R2

where Proposition 5.7 implies the sequence [xnr yns]F(x, y) is eventually zero. Are
these diagonal sequences identically zero in any other directions?

5.3 Andrade et al. [12] studied the bivariate generating function

F(x, y) =
e−x−y

(1 − e−x − e−y)2
,

whose coefficients count certain permutation statistics. Give asymptotics of the
power series coefficients [xrnysn]F(x, y) as n→∞ for all r, s > 0.

5.4 Figure 5.4 in Chapter 3 sketches the contour of Q(x, y) = 1− x − y − 6xy − x2y2

together with the connected components of amoeba(Q)c . For each of the four direc-
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tions r ∈ {±1}2, determine which of the 5 components contains a minimal critical
point, and determine which of the 5 convergent Laurent expansions of 1/Q(x, y)
has an r-diagonal which is eventually zero. Find dominant asymptotics for the main
diagonal of the convergent Laurent expansion corresponding to the bounded amoeba
component B2. You may assume that this expansion admits a minimal critical point
(we give computational methods for determining minimality in Chapter 7).

5.5 Pantone [30] gave asymptotics for the number of ‘singular vector tuples of generic
tensors’ by analyzing the multivariate generating function

F(z) = z1 · · · zd

(1 − z1) · · · (1 − zd)
(
1 −

∑d
i=2(i − 1)ei(z)

) ,
where ei(z) is the ith elementary symmetric function

ei(z) =
∑

1≤ j1< · · ·< ji ≤d
zj1 · · · zji .

In particular, the number of ‘cubical tensors’ in dimension d has as its generating
function the main power series diagonal of F(z). Prove that, although the singular
varietyV contains non-smooth points, the minimal critical points which determine
asymptotics for the number of cubic tensors are determined only by smooth points.
Prove that the number of cubic tensors in dimension d is

Cd(n) =
(d − 1)d−1

(2π)(d−1)/2d(d−2)/2(d − 2)(3d−1)/2 (d − 1)dn n(1−d)/2
(
1 +O

(
1
n

))
.

The off-diagonal power series coefficients of F(z) count other (non-cubic) tensors.
In three dimensions, determine the directions r ∈ R3

>0 where F(z) admits a minimal
smooth contributing point.

5.6 Baryshnikov et al. [2] study main diagonal asymptotics for the power series
expansion of 1/Ha,b(x, y, z), where

Ha,b(x, y, z) = 1 − (x + y + z) + a(xy + xz + yz) + b(xyz)

for parameters a, b ∈ R. Prove that the singular variety of this rational function is
smooth unless 4a3−3a2+6ba+b2−4b = 0. In the smooth cases, determine dominant
asymptotics of the main diagonal sequence. You may use without proof the Grace-
Walsh-Szegő theorem [6, Thm. 1.1]: if f (x, y, z) is unchanged by permutations
of the variables, f is linear in each variable individually, and f (a, b, c) = 0 for
|a|, |b|, |c | < r then there exists |d | < r with f (d, d, d) = 0.

5.7 Let S(ẑ) be an aperiodic Laurent polynomialwith non-negative coefficientswhich
add up to 1. Prove that Proposition 5.10 applies to the function F(z) = 1/(1− zdS(ẑ))
and explicitly determine the limiting function νn(ŝ) in (5.30).
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5.8 Flajolet and Sedgewick [16, Ex. IX.15] analyze Euclid’s gcd algorithm over the
finite field of prime order p by deriving the bivariate generating function

F(u, z) =
1

1 − pz − p(p − 1)uz
=

∑
k,n≥0

ek,nuk zn,

where ek,n denotes the number of pairs of polynomials (r, q) over the finite field of
order p such that q is monic, n = deg q > deg r , and Euclid’s gcd algorithm applied
to (r, q) takes k steps to terminate. Determine, for sufficiently large n, dominant
asymptotics of the largest coefficient of [zn]F(u, z) and the exponent corresponding
to this coefficient, then use Proposition 5.10 to show that the distribution of the
number of steps in the Euclidean algorithm for a pair of polynomials of degree n
satisfies a local central limit theorem.

5.9 Bender and Richmond [5] prove limit theorems for a range of multivariate series,
including the power series expansion of the trivariate function

R(x, y, z) =
(1 − x + (xy − y − 1)z)(1 − y + (xy − x − 1)z) − xyz

(1 − z)(1 − (x + y + 1)z + xyz2)

which arises from a graph theory application. Determine, for sufficiently large n,
dominant asymptotics of the largest coefficient of rn(x, y) = [zn]R(x, y, z) and the
exponent corresponding to this coefficient, then use Proposition 5.10 to show that
the coefficients of rn(x, y) satisfy a local central limit theorem.

5.10 Ramgoolam et al. [33] use ACSV techniques to study so-called quiver gauge
theories. For instance, those authors show that the ‘generalized clover quiver class’
has multivariate generating function

F(z) = 1∏∞
i=1

(
1 −

∑d
j=1 zij

) .
Show that for any direction r ∈ Rd

>0 the meromorphic function F(z) admits
σ = (r1/|r|1, . . . , rd/|r|1) as a minimal critical point for its power series expan-
sion and use Corollary 5.3 to determine dominant asymptotics of the r−diagonal,
where |r|1 = r1 + · · · + rd . Hint: Write the denominator of F as(

1 −
d∑

k=1
zj

)
×

∞∏
i=2

©«1 −
d∑
j=1

zij
ª®¬ ,

then show the zeroes of the second factor don’t affect minimality of σ.

5.11 Modify the analysis of Section 5.1 to obtain an integral expression

fn,n =
∫
R

A(θ)e−nφ(θ)dθ
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for the power series coefficients of F(x, y) = (x − y)/(1 − x − y) along the main
diagonal. What steps in the analysis change with the numerator? Prove that this
integral is identically zero.

5.12 Prove that there are
(N+d

d

)
monomials zm of degree at most N . In other words,

show that the number of solutions to a1 + · · · + ad ≤ N with each ai ∈ N is
(N+d

d

)
.

5.13 Let M = A+ bIk where A is a k × k matrix whose entries Ai, j = aj are constant
down columns, b ∈ C, and Ik is the k × k identity matrix. Prove that the determinant
of M is bk−1(a1 + · · · + ak + b).

Hint: What are the eigenvalues of M , and what are their multiplicities?
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Chapter 6
Application: Lattice Walks and Smooth ACSV

The first steps in the path of discovery, and the first approximate
measures, are those which add most to the existing knowledge of
mankind.
– Charles Babbage

We now apply the asymptotic techniques developed in Chapter 5 to lattice path enu-
meration problems, using the generating function expressions derived in Chapter 4.
As seen in Chapter 4, there is a correspondence between lattice path models having
nice combinatorial properties and those whose generating functions admit partic-
ularly nice representations as diagonals of rational functions. Because Chapter 5
gives asymptotics in the presence of smooth contributing singularities, here we will
consider lattice path models whose step sets have lots of symmetries. In addition
to the precise results we derive, this chapter serves as an extended illustration of
how to apply the powerful machinery of analytic combinatorics in several variables,
including the determination of higher-order constants in the resulting asymptotic
expansions. Chapter 10 of Part III will return to lattice path enumeration after a
theory of analytic combinatorics for non-smooth points is developed in Chapter 9.
Several of the asymptotic results in this chapter were originally given by Melczer
and Mishna [3] and Melczer [2], on which our presentation is based.

6.1 Asymptotics of Highly Symmetric Orthant Walks

We consider walks in Nd on a set of steps S ⊂ {±1, 0}d , where each step i ∈ S is
given some positive real weight wi > 0. As in Chapter 4, we define the weighted
characteristic polynomial

S(z) =
∑
i∈S

wizi

associated to S. To make sure we are considering walks in the correct dimension,
we always make the following assumption.

247
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Standing Assumption: Assume that for each 1 ≤ j ≤ d the set S contains a
step with a positive entry in its jth coordinate (and thus by symmetry also a
negative step in its jth coordinate).

Recall from Chapter 4 that S is called highly symmetric if it is symmetric over
every axis and mostly symmetric if it is symmetric over all but one axis. When S is
highly or mostly symmetric we may assume its axis of non-symmetry, if it exists,
lies in its dth coordinate. Thus, we may write

S(z) = zdA(ẑ) +Q(ẑ) + zdB(ẑ)

where A,Q, and B are Laurent polynomials which are symmetric in their variables
ẑ = (z1, . . . , zd−1) and we again use the notation x = 1/x common in lattice path
enumeration. Define the multivariate generating function

W(z, t) =
∑
i∈Nd

n≥0

wi,nzitn,

where wi,n counts the number of weighted walks of length n using the steps in S
which begin at the origin, end at i ∈ Nd , and never leave Nd . Theorem 4.2 of
Chapter 4 gives the representation W(z, t) = [z≥0]R(z, t) when

R(z, t) =
(z1 − z1) · · · (zd−1 − zd−1)

(
zd − zd

A(ẑ)
B(ẑ)

)
(z1 · · · zd)(1 − tS(z))

is expanded in the formal ring R = Q((z))[[t]] = Q((z1)) · · · ((zd))[[t]]. Analytically,
this formal expansion corresponds to a convergent Laurent expansion in a domainD
containing any point (z, t) where |t | is sufficiently smaller than |zd |, which in turn
is sufficiently smaller than |zd−1 |, and so on until |z1 |, which is bounded away from
zero. Proposition 4.8 of Chapter 4 gives the generating function expression

W(1, t) = ∆
©«
(1 + z1) · · · (1 + zd−1)

(
B(ẑ) − z2

d
A(ẑ)

)
(1 − zd)B(ẑ)(1 − tz1 · · · zdS(z))

ª®®¬ (6.1)

for the number of walks of length n starting at the origin and ending anywhere inNd ,
where S(z) = S(z1, . . . , zd−1, zd). Proposition 4.9 of that chapter gives an alternative
formula, and similar expressions can be derived for walks ending on some collection
of the boundary axes {z ∈ Rd : zj = 0}.

Notice that the denominator of the rational function in (6.1) contains multiple fac-
tors. If S is not highly symmetric then A(ẑ) , B(ẑ), meaning the denominator factor
1−zd does not divide the numerator and the singular variety under consideration will
contain non-smooth points. Although there are situations when only smooth points
dictate asymptotics in the mostly symmetric case, these models are better understood
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after a discussion on non-smooth ACSV, and we return to them in Chapter 10. We
will see that the relative weight of steps moving towards or away from the bounding
axes plays a deciding role in whether or not smooth points determine asymptotics.

When S is highly symmetric then A(ẑ) = B(ẑ) and S(z) = S(z), so (6.1) becomes

W(1, t) = ∆
(
(1 + z1) · · · (1 + zd−1)(1 + zd)

1 − tz1 · · · zdS(z)

)
. (6.2)

The rational function in (6.2) now has a smooth singular variety, because the denom-
inator and its partial derivative with respect to t can never simultaneously vanish.
The domain of convergence D is the power series domain of convergence.

6.1.1 Asymptotics for All Walks in an Orthant

We begin by determining asymptotics for the number of walks beginning at the
origin and ending anywhere in Nd . Let

G(z) = (1 + z1) · · · (1 + zd) and H(z, t) = 1 − tz1 · · · zdS(z),

so that we are interested in asymptotics of themain diagonal power series coefficients
of F(z, t) = G(z)/H(z, t). Recall that z

k̂
denotes the vector z with its kth entry

removed. Since we are considering highly symmetric models, for each 1 ≤ k ≤ d
there exist unique Laurent polynomials Ak(zk̂) and Qk(zk̂) such that

S(z) = (zk + zk)Ak(zk̂) +Qk(zk̂), (6.3)

where Ad(zd̂) = A(ẑ) = B(ẑ) as defined above. For any 1 ≤ k ≤ d the smooth
critical point equation

tHt (z, t) = zkHzk (z, t)

from (5.16) of Chapter 5 becomes

t(z1 · · · zd)S(z) = t(z1 · · · zd)S(z) + tzk(z1 · · · zd)Szk (z),

which implies

0 = tzk(z1 · · · zd)Szk (z) = t(z2
k − 1)(z1 · · · zk−1zk+1 · · · zd)Ak(zk̂).

This gives a characterization of critical points in the main diagonal direction.

Lemma 6.1 The point (x, t) ∈ V is a smooth critical point if and only if for each
1 ≤ k ≤ d either

• xk = ±1, or
• the polynomial (z1 · · · zk−1zk+1 · · · zd)Ak(zk̂) has a root at x

k̂
.
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Note that it is possible to have an infinite set of critical points due to the second
condition. This cannot happen for unweighted models in two dimensions (when
every weight is one) but does occur for weighted models or when d ≥ 3.

Example 6.1 (A Curve of Critical Points)

Consider the unweighted highly symmetric model in three dimensions restricted to
the non-negative octant defined by the step set

S = {(−1, 0,±1), (1, 0,±1), (0, 1,±1), (0,−1,±1), (±1, 1, 0), (±1,−1, 0)}.

Some algebraic manipulation shows

H(x, y, z, t) = 1 − t(xyz)
∑
i∈S

xi1 yi2 zi3

= 1 − t(z2 + 1)(x + y)(xy + 1) − tz(y2 + 1)(x2 + 1),

and solving the system of smooth critical point equations gives the two isolated
critical points (

1, 1, 1,
1
12

)
and

(
−1,−1,−1,

−1
12

)
together with a collection of non-isolated critical points defined by(

x, 1,−1,
1
4x

)
,

(
x,−1, 1,

1
4x

)
,

(
1, y,−1,

1
4y

)
,(

−1, y, 1,
1
4y

)
,

(
1,−1, z,

1
4z

)
,

(
−1, 1, z,

1
4z

)
for all x, y, z ∈ C∗. Lemma 5.6 in Chapter 5 immediately implies that the non-isolated
critical points are degenerate, which can also be verified by direction calculation (in
fact, the Hessian matrix H in (5.25) has a row of zeroes at each of these points).
Thankfully, none of these pathological critical points are minimal: if, for instance,
(x, 1,−1, 1/4x) were minimal then Lemma 5.7 in Chapter 5 would imply

0 = H
(
|x |, 1, 1,

1
4|x |

)
= −

1 + |x |2

|x |
,

which can never occur.

Our observation that the minimal critical points are well behaved in the last
example holds more generally.

Proposition 6.1 The point
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σ =

(
1, . . . , 1,

1
S(1)

)
is a finitely minimal smooth contributing point. All minimal critical points lie in
T(σ) ∩ V, there are at most 2d critical points in T(σ) ∩ V, and if (z, t) is such a
point then z ∈ {±1}d .

Proof The point σ is critical by Lemma 6.1. Suppose (x, tx) lies in D(σ)∩V, where
we note that any choice of x uniquely determines tx onV. Then�����∑

i∈S
wixi+1

����� =
�����(x1 · · · xd)

∑
i∈S

wixi

����� = ���� 1
tx

���� ≥ S(1) =
∑
i∈S

wi.

Since (x, tx) ∈ D(σ) means |xk | ≤ 1 for each 1 ≤ k ≤ d, and each weight wi is
positive, the only way this can happen is if |xk | = 1 for all 1 ≤ k ≤ d and the
monomials xi+1 have the same complex argument for all i ∈ S.

By symmetry, and the assumption that we take a positive step in each direction,
the set {xi+1 : i ∈ S} contains two elements of the form

xi2+1
2 · · · xid+1

d
and x2

1 xi2+1
2 · · · xid+1

d
,

so x2
1 is real when these monomials have the same argument. Thus, x1 = ±1 and

applying the same reasoning to each coordinate gives the stated restriction on x. Since
F(z) is combinatorial, Corollary 5.5 in Chapter 5 implies that (x, tx) ∈ V is aminimal
critical point only if (|x|, t |x |) is also minimal and critical. Since |x| = (|x1 |, . . . , |xd |)
has non-negative coordinates, for every 1 ≤ k ≤ d the polynomial A(|xk̂ |) , 0 and
Lemma 6.1 implies (|x|, t |x |) is minimal and critical only if each |xk | = 1. �

Remark 6.1 Our proof of Proposition 6.1 used the explicit representation of critical
points in Lemma 6.1 to show any minimal critical point (x, tx) lies in T(σ). Alterna-
tively, the smooth critical point equations imply Sz1 (x) = · · · = Szd (x) = 0 and one
may conclude directly from Proposition 4.5 in Chapter 4, which states that there is
a unique positive solution to this system of equations (in this case the point x = 1).

The collection of minimal critical points of F(z, t) thus form the finite set

C =
{(

x, 1
S(x)

)
: x ∈ {±1}d, |S(x)| = S(1)

}
.

In order to find asymptotics using Corollary 5.2 from Chapter 5 it remains only
to determine the matrix H whose entries are given in (5.25), noting that for a d-
dimensional model the function F(z, t) has d + 1 variables. If (x, t) ∈ V is a critical
point with x ∈ {±1}d then a direct calculation shows

xi xjHziz j (x) =

−1 : i , j

−
2x j A j (x)

S(x) : i = j
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while
xj tHz j t (x) = −1 and t2Htt (x) = 0

for all 0 ≤ i ≤ j ≤ d, soH at (x, t) is the d × d diagonal matrix

Hx =
2

S(x)

©«
x1 A1(x) 0 · · · 0

0 x2 A2(x)
. . .

...
...

. . .
. . .

...
0 · · · 0 xdAd(x)

ª®®®®®¬
.

If (x, t) ∈ C then |S(x)| = S(1), so

xk Ak(x)
S(x)

=
xk Ak(x)

(xk + xk)Ak(xk̂) +Qk(xk̂)
=

Ak(1)
S(1)

since xk Ak(xk̂) and Qk(xk̂) must share the same sign. Thus,

Hx = H =
2

S(1)

©«
a1 0 · · · 0

0 a2
. . .

...
...
. . .

. . .
...

0 · · · 0 ad

ª®®®®®¬
(6.4)

is independent of x, where ak = Ak(1) is the total weight of the steps in S that have
kth coordinate equal to 1.

Since G(z) = (1 + z1) · · · (1 + zn) does not vanish at σ, but vanishes at any
other minimal critical point, σ is the only point whose asymptotic contribution
affects dominant asymptotics of the sequence under consideration. The fact that H
is a diagonal matrix and does not depend on x helps simplify the calculations for
determining higher order asymptotic terms, discussed below. Using the quantities we
have computed with Corollary 5.2 from Chapter 5 immediately gives the following.

Theorem 6.1 Let S ⊂ {−1, 0, 1}d \ {0} be a set of steps that is symmetric over every
axis and moves forwards in each coordinate. Then the number cn of walks taking n
steps in S, beginning at the origin, and never leaving the orthant N2 has asymptotic
expansion

cn = S(1)n n−d/2
(
(a1 · · · ad)

−1/2 π−d/2 S(1)d/2 +O
(
1
n

) )
. (6.5)

When every step has weight one then S(1) is simply the number of steps in S, and ak
is the number of steps moving forwards in the kth coordinate.

Example 6.2 (Highly Symmetric Models in Two Dimensions)

There are four non-isomorphic unweighted highly symmetric models in the two-
dimensional quarter plane, whose asymptotics are listed in Table 6.1; asymptotics for
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S Asymptotics S Asymptotics

4n n−1 4
π
√

1 × 1
=

4n

n

4
π

4n n−1 4
π
√

2 × 2
=

4n

n

2
π

6n n−1 6
π
√

3 × 2
=

6n

n

√
6
π

8n n−1 8
π
√

3 × 3
=

8n

n

8
3π

Table 6.1 The four highly symmetric models with unit steps in the quarter plane.

these models were originally conjectured by Bostan and Kauers [1]. Corollary 2.1 of
Chapter 2 implies that none of these models admits an algebraic generating function.

Example 6.3 (A Weighted Model)

In two dimensions, a weighted lattice path model on the steps S = {±1, 0}2 \ {0} is
highly symmetric if and only if each diagonal direction (±1,±1) has the same weight
A > 0, while the vertical steps (0,±1) both have the same weight B > 0, and the
horizontal steps (±1, 0) have the same weight C > 0:

A

AA

A
B

B

C C

Under such a weighting,

cn =

(
(4A + 2B + 2C)n n−1 4A + 2B + 2C

π
√
(2A + B)(2A + C)

) (
1 +O

(
1
n

))
.

Theorem 6.1 immediately gives asymptotics for any explicit model, but is also
flexible enough to give asymptotics for families of models with varying dimension.

Example 6.4 (Asymptotics for Maximal Step Sets)

Let S = {±1, 0}d \ {0} be the step set containing all non-zero steps, which is highly
symmetric when unweighted. Then S(1) = |S| = 3d − 1, and ak = 3d−1 for all k, so
the total number of walks satisfies

cn =
(
(3d − 1)n n−d/2

(3d − 1)d/2

3d(d−1)/2 πd/2

) (
1 +O

(
1
n

))
.
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Higher Order Asymptotics

The higher order terms in the asymptotic expansion of cn are determined by Theo-
rem 5.2 in Chapter 5 through an application of Proposition 5.3; unlike the leading
term, the contributions from minimal critical points other than σ may play a role.
In particular, Theorem 5.2 implies that for any M ∈ N the contribution of a minimal
critical point (x, t) ∈ C to the asymptotics of cn has the form

S(x)n n−d/2 (2π)−d/2 det(H)−1/2 ©«
M∑
j=0

Kx
j n−j +O

(
n−M−1

)ª®¬ ,
whereH is determined by (6.4). The constant Kx

j satisfies

Kx
j = (−1)j

∑
0≤`≤2j

E`+j
(
Px(θ) ψ̃(θ)

`
)

2`+j`!(` + j)!

�����
θ=0

,

where
Px(θ) =

(
1 + x1eiθ1

)
· · ·

(
1 + xdeiθd

)
,

E is the differential operator

E = −

(
S(1)

2

) (
1
a1
∂2

1 + · · · +
1

ad
∂2
d

)
, (6.6)

and

ψ̃(θ) = − log
(

S(x1eiθ1, . . . , xdeiθd )

S(x)

)
−

(
θ tHθ

)
/2

= − log S(eiθ1, . . . , eiθd ) + log S(1) −
(
θ tHθ

)
/2. (6.7)

Because S is highly symmetric S(eiθ1, . . . , eiθd ) is an even function in each variable,
which implies its power series expansion at the origin contains only monomials with
even exponents. This, in turn, implies the power series expansion of ψ̃(θ) at the
origin also contains only monomials with even exponents. Since, by construction, ψ̃
vanishes to at least order 3 at the origin, it therefore vanishes to order 4 at the origin.

Example 6.5 (Higher Asymptotics Terms of Simple Walks)

Consider the set of cardinal directions S = {(1, 0), (0, 1), (−1, 0), (0,−1)}. Then
S(x, y) = x + x + y + y and A1(y) = A2(x) = 1 so H is the 2 × 2 identity matrix
multiplied by 1/2. The set C of critical points consists of two elements,

σ = (1, 1, 1/4) and % = (−1,−1,−1/4).

For ρ = ±1 let
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Pρ(θ) =
(
1 + ρeiθ1

) (
1 + ρeiθ2

)
.

Here E = −2(∂2
1 + ∂

2
2 ) and

ψ̃(θ) = − log
(
eiθ1 + e−iθ1 + eiθ2 + e−iθ2

)
+ log 4 − (θ2

1 + θ
2
2)/4

= − log (cos(θ1) + cos(θ2)) + log 2 − (θ2
1 + θ

2
2)/4

=
θ4

1
96
+
θ2

1θ
2
2

16
+
θ4

2
96
+ · · · .

Thus, for any M ∈ N there is an asymptotic expansion

cn =
4n

nπ
©«

M∑
j=0

[
K (+1)
j + (−1)nK (−1)

j

]
n−j +O

(
n−M−1

)ª®¬ ,
where

Kρ
j =

∑
0≤`≤2j

0≤k≤`+j

(−1)`

`!(` + j)!

(
` + j

k

)
∂2k

1 ∂
2`+2j−2k
2

(
Pρ(θ) ψ̃(θ)`

)����
θ=0

.

Initial terms can easily be computed in a computer algebra system to obtain

cn =
4n

πn

(
4 −

6
n
+

19 + 2(−1)n

2n2 −
63 + 18(−1)n

4n3 + · · ·

)
.

6.1.2 Asymptotics for Boundary Returns

It is often of combinatorial interest to determine the number of walks which end
on some or all of the boundary hyperplanes of Nd . By permuting coordinates,
to enumerate walks returning to r of the boundary hyperplanes it is sufficient to
determine the counting sequence (en) of walks which return to the boundary axes
defined by zj = 0 for 1 ≤ j ≤ r . Applying Proposition 3.14 from Chapter 3 to our
representation

W(z, t) = [z≥0]
(z1 − z1) · · · (zd−1 − zd−1) (zd − zd)

(z1 · · · zd)(1 − tS(z))

for the multivariate generating function W(z, t) implies that the generating function
for en, given by W(z, t) after substituting zj = 0 for 1 ≤ j ≤ r and zj = 1 otherwise,
is the main power series diagonal of
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F(z, t) = G(z)
H(z, t)

=
(1 − z2

1) · · · (1 − z2
r )(1 + zr+1) · · · (1 + zd)

1 − tz1 · · · zdS(z)
.

As the denominator H is unchanged from above, the set of minimal critical points

C =
{(

x, 1
S(x)

)
: x ∈ {±1}d, |S(x)| = S(1)

}
is also unchanged, and asymptotics are still determined by applying Corollary 5.2
from Chapter 5 with the quantitiesH, E, and ψ̃ in (6.4), (6.6), and (6.7), respectively.
On the other hand, when r > 0 the numerator G(z) now vanishes at σ = (1, 1/S(1))
and we must look at higher order terms to determine even the dominant asymptotic
growth of en.

Although this requires getting down in the computational muck, the vanishing of
the numerator actually helps make the computations more tractable. For (x, t) ∈ C
we have x2

j = 1 for all j, so defining Px(θ) = G(x1eiθ1, . . . , xdeiθd ) implies

Px(θ) =
(
1 − e2iθ1

)
· · ·

(
1 − e2iθr

) (
1 + xr+1eiθr+1

)
· · ·

(
1 + xdeiθd

)
= (θ1 · · · θr )

[
(−2i)r (1 + xr+1) · · · (1 + xd) + higher order terms

]
.

Our goal is to determine the smallest j ∈ N such that the coefficient

Kx
j = (−1)j

∑
0≤`≤2j

E`+j
(
Px(θ) ψ̃(θ)

`
)

2`+j`!(` + j)!

�����
θ=0

is non-zero for some (x, t) ∈ C. Because every term in the power series expansion
of Px at the origin is divisible by θ1 · · · θr , and because the differential operator E is a
linear combination of ∂2

1 , . . . , ∂
2
d
, the smallest power of E which can give a non-zero

term when applied to Px and evaluated at the origin is Er (which contains a non-zero
multiple of ∂2

1 · · · ∂
2
r as a summand). Furthermore, the function ψ̃(θ) vanishes to

order 4 at the origin, so for any ` ∈ N the smallest power of E which can give a
non-zero term when applied to ψ̃(θ)` and evaluated at the origin is E2` .

Since the differential operator E`+j has order 2(` + j), the term

E`+j
(
Px(θ) ψ̃(θ)

`
)���
θ=0

is thus zero unless 2(`+ j) ≥ 2r+4`. The smallest value of j for which this inequality
holds is j = r , and the inequality holds in this case only when ` = 0. Furthermore,
the only term in the power Er which can be applied to Px(θ) to give something
non-zero when evaluated at the origin is ∂2

1 · · · ∂
2
r . Since

Er =

(
−

S(1)
2

)r (
1
a1
∂2

1 + · · · +
1

ad
∂2
d

)r
=
(−1)rS(1)r r!
2ra1 · · · ar

(
∂2

1 · · · ∂
2
r

)
+ · · ·
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and the coefficient of θ2
1 · · · θ

2
r in the power series expansion of Px at the origin

is 2r (1 + xr+1) · · · (1 + xd), it follows that

Er+0
(
Px(θ) ψ̃(θ)

0
)���
θ=0
=
(−1)rS(1)r r!
2ra1 · · · ar

× 2r (1 + xr+1) · · · (1 + xd)
(
∂2

1 · · · ∂
2
r

) (
θ2

1 · · · θ
2
r

)
=
(−1)rS(1)r (1 + xr+1) · · · (1 + xd) r!

a1 · · · ar
.

If xj = −1 for any j ≥ r + 1 then the term Kx
r is zero. If xj = 1 for all j ≥ r then

Kx
r = (−1)r

∑
0≤`≤2r

E`+r
(
Px(θ) ψ̃(θ)

`
)

2`+r`!(` + r)!

�����
θ=0

= (−1)r
Er+0 (

Px(θ) ψ̃(θ)
0)

2rr!

�����
θ=0

=
S(1)r2d−r

a1 · · · ar
.

After this careful set of computations, we have proven the following theorem.

Theorem 6.2 Let S ⊂ {−1, 0, 1}d \ {0} be a set of steps that is symmetric over
every axis and moves forwards in each coordinate. Let A ⊂ {1, . . . , d} be a set of r
elements and let

CA =
{(

x, 1
S(x)

)
: x ∈ {±1}d, xj = 1 if j < A, |S(x)| = S(1)

}
.

Then the number eAn of walks of length n taking steps in S, beginning at the
origin, never leaving the orthant Nd , and ending on the intersection of hyperplanes
{x : xj = 0 for j ∈ A} has asymptotic expansion

eAn = S(1)n n−d/2−r
(

S(1)r+d/2

πd/22r√a1 · · · ad
∏

j∈A aj

) ©«
∑

(x,t)∈CA

sgn S(x)n +O
(
1
n

) ª®¬ .
(6.8)

Note that the term
∑
(x,t)∈CA sgn S(x)n equals |CA | > 0 when n is even, but could be

zero when n is odd to account for periodicities.

Example 6.6 (Boundary Walks in Two Dimensions)

Consider the unweighted set of six steps S = {(±1,±1), (0,±1)}, visualized as
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Then a1 = 2, a2 = 3, and the minimal critical points arising in the ACSV analysis
form the set

C = {(1, 1, 1/6), (1,−1, 1/6)}.

The number of walks returning to the axis x = 0 has dominant asymptotics

e{1}n ∼ 6n n−2
(

62

π 2
√

a1a2 a1

)
= 6n n−2

(
3
√

6
2π

)
,

while the number of walks returning to the axis y = 0 has dominant asymptotics

e{2}n ∼ 6n n−2
(

62

π 2
√

a1a2 a2

)
(1 + (−1)n) = 6n n−2

(√
6
π

)
(1 + (−1)n) ,

and the number of walks returning to the origin x = y = 0 has dominant asymptotics

e{1,2}n ∼ 6n n−3
(

63

π 22 √a1a2 a1a2

)
(1 + (−1)n) = 6n n−3

(
3
√

6
2π

)
(1 + (−1)n) .

Note that only even length walks can end at a point with y = 0.

6.1.3 Parameterizing the Starting Point

So far we have only considered highly symmetric models whose walks start at the
origin inNd . Problem 6.2 asks you to generalize themethods of Section 4.1.5 to prove
that the multivariate generating function W(z, t) tracking the endpoint and length of
highly symmetric walks beginning at p ∈ Nd , taking steps in S, and staying Nd

satisfies

W(z, t) = [z≥0]

(
zp1+1
1 − z−(p1+1)

1

)
· · ·

(
zpd+1
d
− z−(pd+1)

d

)
(z1 · · · zd)(1 − tS(z))

,

where the non-negative extraction occurs in Q[z, z][[t]]. Thus, the univariate gener-
ating function counting the number of walks starting at p and returning to the set
{x ∈ Rd : x1 = · · · = xr = 0} is the main power series diagonal of

F(z, t) =
(z1 · · · zd)

(
z−(p1+1)
1 − zp1+1

1

)
· · ·

(
z−(pd+1)
d

− zpd+1
d

)
(1 − zr+1) · · · (1 − zd)(1 − tz1 · · · zdS(z))

=
z−p

(
1 − z2p1+2

1

)
· · ·

(
1 − z2pr+2

r

)
[zr+1]pr+1 · · · [zd]pd

1 − tz1 · · · zdS(z)
, (6.9)

where
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[zj]p j = 1 + zj + · · · + z2p j+1
j .

Example 6.7 (Walks with Prescribed Start but Free End)

The generating function counting the number of walks beginning at z = p and ending
anywhere in Nd is given by

∆
©«

z−p
(
1 + z1 + · · · + z2p1+1

1

)
· · ·

(
1 + zd + · · · + z2pd+1

d

)
1 − tz1 · · · zdS(z)

ª®®¬ .
For any starting point p ∈ Nd , the only minimal critical point where the numerator
of this rational function doesn’t vanish is σ = (1, 1/S(1)).

To determine asymptotics we again aim to compute the smallest j ∈ N such that

Kx
j = (−1)j

∑
0≤`≤2j

E`+j
(
Px(θ) ψ̃(θ)

`
)

2`+j`!(` + j)!

�����
θ=0

is non-zero for some (x, t) ∈ C, where the set of minimal critical points C, together
with ψ̃,H, and E are unchanged from above as the denominator of F is again
unchanged, and

Px(θ) = x−pe−ip·θ
(
1 − e2(p1+1)iθ1

)
· · ·

(
1 − e2(pr+1)iθr

) [
xr+1e

iθr+1
]
pr+1
· · ·

[
xr+1e

iθr+1
]
pd
.

Since ψ̃ and E are unchanged from our previous computations, the same arguments
as above show that the smallest value of j such that Kx

j could be non-zero is j = r . A
short computation shows that the coefficient of θ2

1 · · · θ
2
r in the power series expansion

of Px at the origin is

Γx = x−p 2r (1 + p1) · · · (1 + pr ) [xr+1]pr+1 · · · [xd]pd
,

so that

Kx
r = (−1)r

Er+0 (
Px(θ) ψ̃(θ)

0)
2rr!

�����
θ=0

=
S(1)r

2ra1 · · · ar
Γx.

If there exists a j > r such that xj = −1 then [xj]p j = 0, and thus Γx and Kx
r are zero.

Otherwise [xj]p j = [1]p j = 2pj + 2 and, noting that x−p = xp since x ∈ {±1}d ,

Kx
r =

S(1)r2d−r

a1 · · · ar
xp

d∏
j=1
(1 + pj).

Ultimately, we obtain the following generalization of Theorem 6.2.
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Theorem 6.3 Let S ⊂ {−1, 0, 1}d \ {0} be a set of steps that is symmetric over
every axis and moves forwards in each coordinate. Let A ⊂ {1, . . . , d} be a set of r
elements and let

CA =
{(

x, 1
S(x)

)
: x ∈ {±1}d, xj = 1 if j < A, |S(x)| = S(1)

}
.

Then the number eA,pn of walks of length n taking steps in S, beginning at p ∈ Nd ,
never leaving the orthant Nd , and ending on the intersection of hyperplanes {x :
xj = 0 for j ∈ A} has asymptotic expansion

eA,pn = S(1)n n−d/2−r
(

S(1)r+d/2
∏d

j=1(1 + pj)

πd/22r√a1 · · · ad
∏

j∈A aj

) ©«
∑

(x,t)∈CA

xp sgn S(x)n +O
(
1
n

) ª®¬ .
As above, the term

∑
(x,t)∈CA xp sgn S(x)n helps account for underlying periodicities

in the model when considering walks returning to the boundary axes.

Example 6.8 (Asymptotics of Walks with Prescribed Start but Free End)

When counting walks beginning at z = p and ending anywhere in Nd , the set CA
contains only the point σ = (1, 1/S(1)), and Theorem 6.3 states

eA,pn = S(1)n n−d/2
(

S(1)d/2
∏d

j=1(1 + pj)

πd/2
√

a1 · · · ad

) (
1 +O

(
1
n

) )
.

For any fixed model one may use a computer algebra package to determine the
asymptotic series for eA,pn to arbitrary precision. Each term will now depend on the
starting point p.

Example 6.9 (Higher Order Constants for Simple Walk in Two Dimensions)

Consider the set of cardinal directions S = {(1, 0), (0, 1), (−1, 0), (0,−1)}. As above
the set C of critical points consists of two elements,

σ = (1, 1, 1/4) and % = (−1,−1,−1/4),

the differential operator E = −2(∂2
1 + ∂

2
2 ) and

ψ̃(θ) = − log (cos(θ1) + cos(θ2)) + log 2 − (θ2
1 + θ

2
2)/4.

For ρ = ±1 and (a, b) ∈ N2 we now define
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Pa,b
ρ (θ) = e−iaθ1

(
1 + · · · + ρ2a+1ei(2a+1)θ1

)
e−ibθ2

(
1 + · · · + ρ2b+1ei(2b+1)θ1

)
= e−i(aθ1+bθ2)

(
1 − ei2(a+1)θ1

1 − ρeiθ1

) (
1 − ei2(b+1)θ2

1 − ρeiθ2

)
.

Then the number of walks on the steps S beginning at (a, b) and ending anywhere
in N2 has an asymptotic expansion

ca,bn =
4n

nπ
(1 + a)(1 + b) ©«

M∑
j=0

[
K+1
j + (−1)nK−1

j

]
n−j +O

(
n−M−1

)ª®¬ ,
where

Kρ
j =

∑
0≤`≤2j

0≤k≤`+j

(−1)`

`!(` + j)!

(
` + j

k

)
∂2k

1 ∂
2`+2j−2k
2

(
Pa,b
ρ (θ) ψ̃(θ)

`
)����
θ=0

.

Computing the first terms of this expansion gives

cn =
4n(a + 1)(b + 1)

πn

(
4 −

2(2a2 + 2b2 + 4a + 4b + 9)
3n

+
p(a, b) + 90(−1)a+b+n

90n2 + O
(

1
n3

))
,

where p(a, b) is an explicit integer polynomial of degree 4 which can be found in the
computer algebra worksheet corresponding to this example.

Problems

6.1 For what dimensions d ∈ N does the number of unweighted walks of length n
on the maximal step set S = {±1, 0}d \ {0}, beginning at the origin and restricted
to Nd , have an algebraic generating function?

6.2 Fix p ∈ Nd and a highly symmetric step set S. Prove that the multivariate
generating functionW(z, t) tracking the endpoint and length of walks beginning at p,
taking steps in S, and staying Nd satisfies the kernel-like functional equation

(z1 · · · zd )W (z, t) = z
p1+1
1 · · · z

pd+1
d

+ t(z1 · · · zd )S(z)W (z, t)

− t
∑

V⊂[d]

(−1)|V |(z1 · · · zd )S(z)W (z, t)
���
z j=0, j∈V

,

generalizing (4.12). Use the kernel method for highly symmetric models presented
in Section 4.1.5 of Chapter 4 to show
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W(z, t) = [z≥0]

(
zp1+1
1 − z−(p1+1)

1

)
· · ·

(
zpd+1
d
− z−(pd+1)

d

)
(z1 · · · zd)(1 − tS(z))

,

where the non-negative extraction occurs in Q[z, z][[t]].

6.3 If e(j) denotes the jth elementary basis vector with a 1 in position j and all other
entries 0, find asymptotics for the number of walks in Nd which use the step set
S = {±e(1), . . . ,±e(d)}, begin at the origin, and end anywhere in Nd . What about
walks returning to the origin?

6.4 For each of the four highly symmetric step setsS ⊂ {±1, 0}2\{0}, find dominant
asymptotics for the number of unweighted walks which begin at a point (a, b) ∈ N2

and end (i) anywhere in N2, (ii) on the x-axis, (iii) on the y-axis, and (iv) at the
origin.
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Chapter 7
Automated Analytic Combinatorics

It seems to us obvious. . . to bring out a double set of results, viz.
1st, the numerical magnitudes which are the results of
operations performed on numerical data. . . 2ndly, the
symbolical results to be attached to those numerical results,
which symbolical results are not less the necessary and logical
consequences of operations performed upon symbolical data,
than are numerical results when the data are numerical.
— Ada Augusta, Countess of Lovelace

After a time many discrepancies occurred, and at one point
these discordances were so numerous that I exclaimed, ‘I wish to
God these calculations had been executed by steam’.
— Charles Babbage

Wenow turn to the task of automating the asymptoticmethods discussed inChapter 5.
A generic rational function has a smooth singular set and admits a finite number
of critical points, defined by the polynomial equations (5.16) in Chapter 5. Thus,
the bulk of our work involves manipulating the algebraic critical points in order
to algorithmically determine which (if any) are minimal. We will make use of
symbolic-numeric algorithms, using separation bounds on the roots of univariate
integer polynomials to determine an accuracy level so that numeric approximation
to such accuracy allows us to perform exact calculations.

In order to simplify our presentation we focus on algorithms for asymptotics of
power series expansions in positive directions r ∈ Zd

>0. The algorithms we develop
extend easily to convergent Laurent expansions and general directions r ∈ Rd∗ .

Our Complexity Model

Our algorithms will take as input multivariate integer polynomials. We study the bit
complexity of the algorithms, meaning we count the number of additions, subtrac-
tions, and multiplications computed by the algorithms when representing all integers
in binary. Measuring binary operations gives a more realistic estimate of the time
to run an algorithm than counting the number of integer operations, since computer
processors perform operations on numbers of bounded size.

The bit complexities of our algorithms will be expressible in terms of the number
of variables, the degrees, and the coefficient sizes of their input polynomials. The
coefficient size of a polynomial is captured by the following concept.
Definition 7.1 (polynomial heights) The height of a multivariate polynomial P ∈
Z[z], denoted h(P), is the base 2 logarithm of the maximum absolute value of its
non-zero coefficients. For instance, the height of P(x, y) = 7 − 11x5y + 4y2 is
h(P) = log2 11. We define the height of the zero polynomial to be zero.

263
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The height of a polynomial gives a bound on the bitsizes of its coefficients and, with
the degree of the polynomial, a lower bound on how close its distinct roots can be.

Definition 7.2 (multivariate complexity) Extending from our univariate notation,
if f , g : Nm → R are two multivariate sequences then we write

f = O(g) if there exists a constant M > 0 such that | f (n)| ≤ M |g(n)| for
all n ∈ Nd .

f = Õ(g) if f = O(g logk |g |) for some natural number k.

When considering the complexity of an algorithm, we often reserve δ ≥ 2 for a
degree bound on the input polynomials in Z[z] = Z[z1, . . . , zd] and define D = δd .

The complexities of most of our algorithms are dominated by a factor of the
form Õ(Dc) for some c ∈ N, and we try to minimize the exponent c. Although the
complexity will be singly exponential in the degree and number of variables, this is
polynomial in the number coefficients appearing in a generic polynomial of degree δ
in d variables, and polynomial in the generic number of critical points. Additional
refinements of our algorithms which better capture sparsity in the input polynomials
can be found in the paper ofMelczer and Salvy [26]. The presentation of this chapter,
including the details of the algorithms, is based on the paper of Melczer and Salvy.

7.1 An Overview of Results and Computations

We begin by sketching our main results and viewing some examples, before giving
a high-level overview of our algorithms. Recall from Definition 5.8 in Chapter 5
that a function F(z) is combinatorial if its power series expansion contains only a
finite number of negative terms. Because Lemma 5.7 in Chapter 5 gives an efficient
test for minimality when F(z) is combinatorial, it will be significantly easier to de-
termine asymptotics under this assumption. After some additional background, our
main result is stated in Theorem 7.1 of Section 7.2, which discusses the complexity
and correctness of our main algorithms: Algorithm 1 (which computes dominant
asymptotics given the minimal critical points), Algorithm 2 (which determines min-
imal critical points in the combinatorial case), and Algorithm 3 (which determines
minimal critical points in the general case). The necessary algebraic machinery and
data structures for the algorithms are developed in Section 7.3, and rely on certain al-
gebraic bounds and algorithms for univariate polynomials discussed in the appendix
to this chapter.

Our algorithms start with polynomials G,H ∈ Z[z] of degrees at most δ and
heights at most h (meaning the coefficients of the polynomials have absolute values
at most 2h), and a fixed direction r ∈ Zd

>0. Because the constants appearing in
the asymptotic expansion (5.27) given by Theorem 5.2 in Chapter 5 are defined
by potentially high degree algebraic numbers, it may not be desirable (or even
possible) to represent them exactly using radicals. Thus, under verifiable and mostly
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generic assumptions, our algorithms encode asymptotics by returning three rational
functions A, B,C ∈ Z(u), a square-free polynomial P ∈ Z[u], and a list U of roots
of P(u), specified by regions of C containing exactly one root of P, such that

fnr = (2π)(1−d)/2
(∑
u∈U

A(u)
√

B(u)C(u)n
)
(rdn)(1−d)/2

(
1 +O

(
1
n

))
.

In the combinatorial case, Algorithms 1 and 2 return this expansion using a proba-
bilistic method in Õ(hδ3+4d) bit operations. In the general case, due to the increased
difficulty in determining minimal critical points, Algorithms 1 and 3 return this ex-
pansion using a probabilistic method in Õ

(
hδ12+12d ) bit operations. In either case,

the values of A(u), B(u), and C(u) can be determined to precision 2−κ at all elements
of U in Õ(κδd + hδ3+3d) bit operations.

The probabilistic aspects of our algorithms come from methods for computing a
certain algebraic representation of the smooth critical points, known as a Kronecker
representation. One can compute this representation deterministically using Gröbner
bases (see Section 7.3) but doing so loses the complexity estimates we derive.
Melczer and Salvy [26] gave a Maple implementation1 of the algorithms for the
combinatorial case. In practice the probabilistic nature of these algorithms does not
have a large impact.

Example 7.1 (Automated Apéry Asymptotics)

As seen in previous chapters, the sequence of Apéry numbers is the main diagonal
of the rational function 1/(1−w(1+ x)(1+ y)(1+ z)(1+ y + z+ yz+ xyz)). Running
the Maple commands

> F = 1/(1-w*(1+x)*(1+y)*(1+z)*(1+y+z+y*z+x*y*z)):
> A, U = DiagonalAsymptotics(numer(F),denom(F),[w,x,y,z],u,n);

after importing the code ofMelczer and Salvy verifies that certain necessary assump-
tions are satisfied (other than combinatoriality, which can be verified by inspection)
and returns the expression

fn,n,n,n ∼
(

u + 81
17u − 15

)n (
1

4π3/2n3/2

) √
u + 81

28 − 24u

where u is the root of
P(u) = u2 + 162u − 167

which is approximately 1.0243 . . . . The algorithm knows that the root u is real, and
determines it to enough precision to uniquely identify it among the roots of P. In
this case P is quadratic, so u can be expressed with a square-root to obtain

1 A link to this package is available on the book website.
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fn,n,n,n ∼

√
48 + 34

√
2

(
17 + 12

√
2
)n

8π3/2n3/2 ,

as was derived by hand in Chapter 5.

Remark 7.1 There is some randomness in our algorithms, so a reader running our
examples on their computer may obtain different expressions and polynomials P(u).
Of course, all encodings yield the same asymptotic expansions.

Example 7.2 (A Sequence Alignment Problem)

Sequence alignment problems arise in molecular biology when trying to determine
evolutionary relationships between species by comparing the ‘closeness’ of different
sequences (see, for instance, Waterman [17, Ch. 39]). Pemantle and Wilson [33]
used multivariate generating functions to enumerate certain families of sequence
alignments parametrized by two natural numbers k and b. For fixed k, b ∈ N our
algorithm rigorously computes asymptotics of the sequence of interest. When k =
b = 2 the sequence of interest is the main power series diagonal of

F(x, y) =
x2y2 − xy + 1

1 − (x + y + xy − xy2 − x2y + x2y3 + x3y2)
,

which is combinatorial. Running our algorithm gives that the main power series
diagonal has asymptotic growth(

10 u4 − 40 u3 + 54 u2 − 26 u + 4
4 u4 − 19 u3 + 25 u2 − 4 u − 6

)n (
4 u4 − 14 u3 + 14 u2 − 2 u + 2

)
√

n
√

2π
(
10 u4 − 40 u3 + 54 u2 − 26 u + 4

)
×

√
10 u4 − 40 u3 + 54 u2 − 26 u + 4
4 u4 − 16 u3 + 20 u2 − 8 u + 4

,

where u is the real degree 5 algebraic number defined by

P(u) = 2u5 − 10u4 + 18u3 − 13u2 + 4u − 2 = 0, u ≈ 1.4704 . . . .

Note that the roots of P cannot be expressed in radicals2.

2 The Galois group of P is the symmetric group S5.
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7.1.1 Surveying the Computations

Before introducing the necessary algebra to fully describe our data structures and
algorithms, we discuss the computations to be carried out. At the highest level,
Theorem 5.4 in Chapter 5 implies that the following steps determine asymptotics.

DiagonalAsymptotics

INPUT: Polynomials G(z),H(z) ∈ Z[z] and direction r ∈ Zd
>0

OUTPUT: Asymptotics of the r-power series diagonal of F(z) = G(z)/H(z)

1. If G and H are not coprime, divide each by their greatest common divisor.

2. If H(0) = 0 then Fail.

3. Determine the square-free factorization Hs of H

4. Let C denote the zeroes of the integer polynomial system

Hs = z1Hs
z1
− r1λ = · · · = zdHs

zd
− rdλ = 0 (7.1)

in the variables z, λ. If C is not finite then Fail.

5. Determine the setU ⊂ C of minimal critical points. IfU = � then Fail.

6. If G vanishes at each element ofU, if the determinant of the HessianH defined
in (5.25) of Chapter 5 is zero at an element ofU, or ifU contains non-smooth
points then Fail.

7. Sum the leading asymptotic contributions given by Theorem 5.3 in Chapter 5
for each element ofU, and return the result.

DiagonalAsymptotics is fleshed out in Algorithm 1. Determining the critical
point solutions of (7.1) requires manipulating algebraic quantities, and can be easily
implemented using classical algebraic tools discussed in Section 7.3. Verifying the
necessary conditions for our methods is also easy, for instance when H is square-free
then (z, λ) ∈ C satisfies λ = 0 if and only if z is a non-smooth point of the singular
variety or some coordinate of z is zero. In contrast, the determination of minimal
critical points can be quite delicate and requires further investigation.

7.1.2 Minimal Critical Points in the Combinatorial Case

Assume first that F(z) is combinatorial and admits a finite number of critical points.
Corollary 5.5 from Chapter 5 implies that every minimal critical point has the
same coordinate-wise modulus as a critical point with positive coordinates, and
Corollary 5.6 implies there can be at most one minimal critical point with positive
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coordinates. Furthermore, Proposition 5.4 in Chapter 5 implies that minimality
can be determined by examining line segments from the origin to critical points
with positive coordinates. Because critical points may have large degree algebraic
coefficients, testing minimality for such points is done implicitly by introducing the
polynomial H(tz1, . . . , tzd) ∈ Z[z, t] into the critical point system (7.1) and searching
for real solutions with t ∈ (0, 1).

MinimalCriticalComb

INPUT: Coprime polynomials G(z),H(z) ∈ Z[z] and direction r ∈ Zd
>0

ASSUMING: F(z) = G(z)/H(z) is combinatorial
OUTPUT: The setU of minimal critical points of F(z) in the direction r

1. If H is not square-free then replace H by its square-free part

2. Let S denote the zeroes of the integer polynomial system

H(z) = z1Hz1 (z) − r1λ = · · · = zdHzd (z) − rdλ = H(tz1, . . . , tzd) = 0 (7.2)

in the variables z, λ, t. IfS is not finite or ifS contains a point of the form (z, λ, t)
where λ = 0 and t = 1 then Fail.

3. Let C′ = {z ∈ Cd∗ : (z, λ, 1) ∈ S for some λ ∈ C} be the set of critical points.

4. Find w ∈ Rd
>0 ∩ C

′ such that t < (0, 1) for any (w, λ, t) ∈ S.
If there is more than one or no such point then Fail.

5. Return the set U = {z ∈ C′ : z ∈ T(w)} of critical points with the same
coordinate-wise modulus as w.

MinimalCriticalComb is more fully described in Algorithm 2. Using Mini-
malCriticalComb to determine minimal critical points, DiagonalAsymptotics
gives dominant asymptotics when it returns without failing. This happens whenever
the following assumptions are met

(A0) F(z) admits at least one minimal critical point;
(A1) (∇H)(z) does not vanish at a root of H(z);
(A2) G(z) is non-zero for at least one minimal critical point;
(A3) all minimal critical points of F(z) are non-degenerate;
(J1) the Jacobian matrix of the system (7.2) in the variables z, λ, t is non-singular

at the solutions of (7.2).

Proposition 5.11 from Chapter 5 implies assumptions (A1) to (A3) hold generically.
When F is combinatorial then Corollary 5.4 in Chapter 5 and the results of Sec-
tion 3.3.1 in Chapter 3 imply that F admits a minimal critical point with positive
coordinates whenever the coefficients of the linear terms z1, z2, . . . , zd in H are non-
zero, which also holds generically. Problem 7.1 asks you to adapt the arguments in
Section 5.3.4 of Chapter 5 to prove that (J1) holds generically.
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Assumption (A1) implies that the singular variety is smooth, while (A2) im-
plies we can use the explicit expression in Theorem 5.1 for dominant asymptotics.
Furthermore, the so-called Jacobian criterion [11, Theorem 16.19] implies that the
polynomial system (7.2) is finite whenever its Jacobian matrix has full rank (i.e.,
is non-singular) at all of its solutions. Thus, (J1) is slightly stronger than requiring
that F(z) admit a finite number of critical points: we use (J1) to compute a Kronecker
representation of the solutions of this system using Proposition 7.3 below. All of our
conditions, except that F is combinatorial, can be verified algorithmically.

Remark 7.2 Asymptotics can still be determined in many situations where (A1)
and (A2) do not hold. Assumption (A1) implies H is square-free and the singular
variety is everywhere smooth; both conditions hold generically, but are not necessary
to apply Theorem 5.3 from Chapter 5. When (A2) doesn’t hold the leading term in
Theorem5.3 vanishes but one can try calculating higher-order terms. These situations
can be handled by small extensions of our algorithms.

7.1.3 Minimal Critical Points in the General Case

In the combinatorial case, to prove w ∈ V is minimal it is sufficient to check
that for each t ∈ (0, 1) the point t |w| = (t |w1 |, . . . , t |wd |) does not lie in V. Thus,
one can think of tracing a line segment from the origin to |w| and stopping if the
segment intersects V. In the non-combinatorial case, things are more difficult: to
prove that w ∈ V is minimal, it must be determined for each t ∈ (0, 1) whether
there exists a point inV with the same coordinate-wise modulus as tw. One can still
imagine tracing a line segment from the origin to |w|, but now each point on the line-
segment defines a product of circles which must be checked for elements ofV. This,
unsurprisingly, leads to an algorithm for minimality which is more computationally
expensive.

In order to express the moduli of coordinates algebraically, we convert our d
complex variables to 2d real variables.

Definition 7.3 (real and imaginary polynomial decomposition) Given a polyno-
mial f (z) ∈ R[z] we define f (x + iy) = f (x1 + iy1, . . . , xd + iyd) and let f R(x, y)
and f I(x, y) denote the unique polynomials in R[x, y] such that

f (x + iy) = f R(x, y) + i f I(x, y).

Because a polynomial is everywhere differentiable, the Cauchy-Riemann equa-
tions [19, Ch. 2.1] state that the partial derivatives of f R and f I satisfy the equalities
f Rx j
(x, y) = f Iyj (x, y) and f Ryj (x, y) = − f Ix j

(x, y) for each 1 ≤ j ≤ d, while

fz j (x + iy) = 1
2

(
f Rx j
(x, y) + i f Ix j

(x, y)
)
−

i
2

(
f Ryj (x, y) + i f Iyj (x, y)

)
.

Some light algebraic manipulation then shows that the real solutions of the system
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HR(a, b) = HI(a, b) = 0 (7.3)

ajHR
x j
(a, b) + bjHR

yj
(a, b) − rjλR = 0, j = 1, . . . , d (7.4)

ajHI
x j
(a, b) + bjHI

yj
(a, b) − rjλI = 0, j = 1, . . . , d (7.5)

in the variables a, b, λR, λI correspond exactly to all complex solutions of the smooth
critical point equations

H(z) = z1Hz1 (z) − r1λ = · · · = zdHzd (z) − rdλ = 0

with z = a + ib and λ = λR + iλI . Furthermore, if we define the equations

HR(x, y) = HI(x, y) = 0 (7.6)

x2
j + y2

j − t(a2
j + b2

j ) = 0, j = 1, . . . , d (7.7)

then (7.7) encodes a relationship between the coordinate-wise moduli of x + iy and
a + ib when x, y, a, and b are real vectors. In particular, Proposition 5.4 in Chapter 5
implies that a point z = a + ib ∈ V is minimal if and only if there is no solution to
equations (7.6) and (7.7) with x, y, t real and 0 ≤ t < 1.

The polynomial system defined by (7.3)–(7.7) contains 3d + 4 equations in the
4d + 3 variables a, b, x, r, λR, λI, and t. Let

• W ⊂ C4d+3 denote the complex solutions of the system of equations (7.3)–(7.7)

• WR =W ∩ R4d+3 be the real part ofW

• πt :WR → C be the projection map πt (a, b, x, y, λR, λI, t) = t

• C = {(a, b) ∈ R2d
∗ : (a, b, x, y, λR, λI, t) ∈ WR for some x, y, λR, λI, t}

We now have a strategy for determining minimality: each (a, b) ∈ C corresponds to
a critical point z = a + ib, and that critical point is minimal if and only if there does
not exist (a, b, x, y, λR, λI, t) ∈ WR with 0 ≤ t < 1. Unfortunately, even if the setWR
of real solutions is finite the setW of complex solutions will be infinite (when non-
empty) since there are more variables than equations. Although the real solutions
of (7.3)–(7.7) are the only ones which have meaning in our original problem, most
algebraic techniques for polynomial system solving work, at least implicitly, over an
algebraically closed field.

To get around this problem, we introduce additional equations satisfied by the
real solutions we care about which also eliminate spurious complex solutions. Our
techniques are inspired by so-called critical point methods3 for sampling points
in real algebraic sets, an influential approach to real polynomial system solving
popularized by Grigor’ev and Vorobjov [18] and Renegar [34].

Proposition 7.1 Let H ∈ Q[z] be a polynomial which does not vanish at the origin,
and suppose that the Jacobian matrix of the polynomials in (7.3)–(7.7) has full rank

3 Although algebraic results are usually most naturally stated over algebraically closed fields,
calculus and geometry typically ‘respect’ real constructions (for instance, there are both real and
complex versions of the implicit function theorem). Critical point methods exploit this difference.
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at any point inW. The point z = a + ib ∈ Cd∗ with a, b ∈ Rd∗ is a minimal critical
point in the direction r if and only if (a, b) satisfies equations (7.3)–(7.5) and there
does not exist (x, y, ν, t) ∈ R2d+2 with 0 < t < 1 satisfying equations (7.6), (7.7), and

(yj − νxj)HR
x j
(x, y) − (xj + νyj)HR

yj
(x, y) = 0, j = 1, . . . , d. (7.8)

Remark 7.3 If the Jacobian matrix of the polynomial system (7.3)–(7.7) has full rank
then the Jacobian matrix of the sub-system (7.3)–(7.5) also has full rank. Thus, the
equations (7.3)–(7.5) admit a finite number of complex solutions under the conditions
of Proposition 7.1.

Proof For fixed (a, b) ∈ R2d
∗ a point σ = (a, b, x, y, λR, λI, t) ∈ WR is a local

extremum of πt as a map fromWR toR only when the gradient of πt is perpendicular
to the tangent plane ofWR at σ. This, in turn, implies the gradient of πt and the
gradients of the polynomials HR,HI, and the x2

j + y
2
j − t(a2

j + b2
j ), which defineWR,

are linearly dependent. In other words, at any such extremum the matrix

J =

©«

∇HR(x, y)
∇HI(x, y)

∇(x2
1 + y2

1 − t(a2
1 + b2

1))
...

∇(x2
d
+ y2

d
− t(a2

d
+ b2

d
))

∇(t)

ª®®®®®®®®¬
=

©«

HR
x1
· · · HR

xd
HR
y1
· · · HR

yd
0

HI
x1
· · · HI

xd
HI
y1
· · · HI

yd
0

2x1 0 0 2y1 0 0 −(a2
1 + b2

1)

0
. . . 0 0

. . . 0
...

0 0 2xd 0 0 2yd −(a2
d
+ b2

d
)

0 · · · 0 0 · · · 0 1

ª®®®®®®®®¬
is rank deficient, so a non-trivial linear combination of its rows vanishes. Using the
Cauchy-Riemann equations to write HI

x j
= −HR

yj
and HI

yj
= HR

x j
then implies the

existence of ν, λ1, . . . , λd such that

HR
x j
− νHR

yj
+ λj xj = 0

HR
yj
+ νHR

x j
+ λj yj = 0

for each j = 1, . . . , d, which simplifies to give (7.8).
For each of the finite number of points (a, b) ∈ R2d

∗ satisfying equations (7.3)–
(7.5) under our assumptions, the set

S =
{
(x, y, t) ∈ R2d+1 : t ∈ [0, 1], (a, b, x, y, t) satisfy (7.6) and (7.7)

}
is compact, since t ∈ [0, 1] implies x2

j + y2
j ≤ a2

j + b2
j for each j = 1, . . . , d.

Furthermore, S is non-empty because it contains (a, b, 1) and has no point with t = 0
since H(0) , 0. Thus, the continuous function πt achieves its minimum on the
compact set S and such a minimizer must satisfy (7.8) for some ν ∈ R and 0 < t ≤ 1.
Any solution (x, y, t) ∈ S with t < 1 gives a point x + iy that has smaller coordinate-
wise modulus than a+ib, meaning z = a+ib is not minimal. Conversely, if z = a+ib
is not minimal then there exists (x, y, t) ∈ S with t minimal and t < 1. This is a local
minimum of πt onWR so there exists ν ∈ R such that (7.8) is satisfied. �
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Equations (7.3)–(7.8) now consist of 4d + 4 equations in 4d + 4 unknowns,
meaning they can have a finite number of complex solutions whose real solutions
encode all critical points and help determine minimality. In addition to (A0)–(A3),
we work under the following assumption,

(J2) the Jacobianmatrix of the system (7.3)–(7.8) in the variablesa, b, x, y, λR, λI, t
is non-singular at the solutions of (7.3)–(7.8).

Assumption (J2) is slightly stronger than what we need to apply the results of
Chapter 5, but this formulation will help us bound the complexity of the algebraic
methods we develop below. As noted in Remark 7.3, (J2) implies that F admits
only a finite number of critical points. Ultimately, we have obtained the following
algorithm.

MinimalCriticalGen

INPUT: Coprime polynomials G(z),H(z) ∈ Z[z] and direction r ∈ Zd
>0

OUTPUT: The setU of minimal critical points of F(z) in the direction r

1. Let S be the algebraic set defined by the zeroes of the polynomial system (7.3)–
(7.8) in the variables a, b, x, y, λR, λI, ν, t. If S is not finite then Fail.

2. Let U denote the points a + ib ∈ Cd∗ such that: (1) there exist x, y, λR, λR, ν, t
with (a, b, x, y, λR, λI, ν, t) ∈ S ∩ R4d+4, and (2) for any such points t < (0, 1).

3. IfU is empty, if it has an element where λR = λI = 0, or if the elements ofU
do not all have the same coordinate-wise modulus then Fail.

4. ReturnU.

MinimalCriticalGen is more fully described in Algorithm 3. Using Minimal-
CriticalGen to determine minimal critical points, DiagonalAsymptotics gives
dominant asymptotics when it returns without failing. This happens under assump-
tions (A0)–(A3) and (J2), all of which can be verified algorithmically.

7.2 ACSV Algorithms and Examples

Having described our approach and assumptions, we can now state our main result.

Theorem 7.1 Let G(z) and H(z) be polynomials in Z[z] = Z[z1, . . . , zd] of degrees
at most δ and coefficients of absolute value at most 2h , and suppose that Assump-
tions (A0)–(A3) hold. Fix a direction r ∈ Zd

>0. If F = G/H is combinatorial and
Assumption (J1) holds, then Algorithm 2 is a probabilistic algorithm that computes
the minimal critical points of F in the direction r in Õ(hδ3D4) bit operations,
where D = δd . Whether or not F = G/H is combinatorial, if Assumption (J2) holds
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then Algorithm 3 is a probabilistic algorithm that computes the minimal critical
points of F in the direction r in Õ

(
hδ12D12) bit operations.

In either case, Algorithm 1 is a probabilistic algorithm that uses these results
and Õ(hδ3D4) bit operations to compute three rational functions A, B,C ∈ Z(u), a
square-free polynomial P ∈ Z[u] and a listU of roots of P(u), specified by disks in C
containing exactly one root of P, such that

[znr]F(z) = (2π)(1−d)/2(rdn)(1−d)/2
(∑
u∈U

A(u)
√

B(u)C(u)n +O
(
1
n

))
. (7.9)

The values of A(u), B(u) and C(u) can be refined to precision 2−κ at all elements
of U in Õ(κD + hδ3D3) bit operations.

Remark 7.4 Using techniques which better take into account the multi-homogeneous
structure of the polynomial system (7.3)–(7.8) (namely that (7.3)–(7.5) contain only
variableswhich appearwith degree atmost 2 in the remaining equations) it is possible
to reduce the complexity of determining minimal critical points in the general case
from Õ

(
hδ12D12) to Õ(hδ523dD9) bit operations. This requires even more than the

already considerable algebraic framework we discuss here, so we refer to Melczer
and Salvy [26] for additional details.

Theorem 7.1 is obtained by encoding the smooth critical points with an efficient
algebraic data structure.

Definition 7.4 (Kronecker representations) A Kronecker representation or ratio-
nal univariate representation [P(u),Q] of a finite algebraic set

V(f) = {z : f1(z) = · · · = fd(z) = 0}

defined by the polynomial system f = ( f1, . . . , fd) ∈ Z[z]d consists of

• a new variable u which is an integer linear combination of the z,

u = κ1z1 + · · · + κdzd ∈ Z[z],

such that u takes distinct values for z ∈ V(f),
• a square-free polynomial P ∈ Z[u],
• polynomials Q1, . . . ,Qd ∈ Z[u] of degrees less than deg(P) such that V(f) is

determined by the z-coordinates of the solutions of the system

P(u) = 0,


P′(u)z1 −Q1(u) = 0,

...
P′(u)zd −Qd(u) = 0.

(7.10)

Kronecker representations are useful because they encode the elements of a finite
multi-dimensional algebraic set in terms of a univariate polynomial, and because
the polynomials P,Q j typically have much smaller coefficient size than alternative
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Algorithm 1: DiagonalAsymptotics
Input: Polynomials G(z), H(z) ∈ Z[z] and direction r ∈ Nd

Output: Polynomials A, B,C, P and a set U of roots of P such that the power series
coefficients fnr of F = G/H satisfy (7.9)

/* Verify singularities of F are roots of H */
if G and H are not coprime then G ← G/gcd(G, H) and H ← H/gcd(G, H)
if H(0) , 0 then return fail
/* Define the set of critical points */

C ←
{
H, z1Hz1 − r1λ, . . . , zdHzd − rdλ

}
[P,Q, u] ← Kronecker(C)
/* Determine the subset of minimal critical points using Algorithm 2
or Algorithm 3 below */

if F is known to be combinatorial then U← MinimalCriticalComb(H, r, [P,Q, u])
else U← MinimalCriticalGen(H, r, [P,Q, u])
/* Find Hessian and numerator at the minimal critical points */

H̃ ← determinant of the polynomial matrix (zdHzd )H defined by (5.25) with w = z
PolySys← C ∪

{
h − H̃(z), T − zr1

1 · · · z
rd
d
, g +G(z)

}
[P, (Q,Q

H̃
,QT ,Q−G )] ← Kronecker(PolySys) using Proposition 7.4

/* Verify nondegeneracy of critical points and leading order of
asymptotics then return */

if Q
H̃
(u) = 0 at any u ∈ U, or Q−G (u) = 0 at all u ∈ U then return fail

return (A, B,C, P, U) = (Q−G/(rdQλ), (rdQλ)
d−1(P′)2−d/Q

H̃
, P′/QT , P, U)

univariate encodings. Since u is an integer linear combination of the other variables,
and the polynomials P and Q j have integer coefficients, a root of P(u) is real if and
only if all coordinates z at the corresponding element ofV(f) are real.

A Kronecker representation of V(f) gives an encoding of all elements of V(f),
but to talk about specific elements of V(f) it is necessary to introduce additional
information.

Definition 7.5 (isolating regions and numeric Kronecker representations)Given
a univariate polynomial P(u) and root w ∈ C of P, an isolating disk for w is a disk
D ⊂ C of rational radius whose centre has rational real and imaginary parts, such
that w is the only root of P in D. If w is a real root of P then an isolating interval
for w is a finite interval I ⊂ R with rational endpoints such that w is the only root
of P in I. A numeric Kronecker representation [P(u),Q,U] of V(f) is a Kronecker
representation [P(u),Q] of V(f) together with a sequence U of isolating intervals
for the real roots of the polynomial P and isolating disks for the non-real roots of P.

Determining the elements of U to sufficient precision allows one to argue about
the elements of the underlying algebraic set, including: approximating the solutions
to arbitrary accuracy, selecting which solutions have real coordinates in certain
intervals, determining which solutions have the same coordinate-wise modulus, and
more. In practice, the elements of U are often stored as floating point approximations
whose accuracy is certified to a specific precision.

Section 7.3 discusses the necessary algebraic background, algorithms for com-
puting Kronecker and numeric Kronecker representations, properties of Kronecker
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Algorithm 2: MinimalCriticalComb
Input: Polynomial H(z), direction r ∈ Nd and Kronecker representation [P,Q, u] of the

smooth critical points for 1/H in the direction r assuming 1/H is combinatorial
Output: Set U of roots of P corresponding to the minimal critical points
/* Determine the extended critical point system */

S ←
{
H, z1Hz1 − r1λ, . . . , zdHzd − rdλ, H(tz1, . . . , tzd )

}
[P̃, Q̃] ← Kronecker(S)
/* Find the minimal critical point with positive real coordinates */

[P̃, Q̃, Ũ] ← NumKronecker(P̃, Q̃, κ), where κ = Õ(hδ2D2) is sufficient precision to
group the roots of P̃ by the distinct values and signs they give to each z j = Q̃ j/P̃

′ at the
real roots of P̃ using Lemmas 7.4 and 7.5 below
/* Find elements with positive real coordinates */

M ← {{u ∈ Ũ ∩ R : Q̃ j (u)/P̃(u) > 0 for all 1 ≤ j ≤ d}}
/* Find unique minimal critical point with positive coordinates */
for each j ∈ {1, . . . , d} do

Split apart each set in M by the distinct values its elements give Q̃ j (v)/P̃
′(v)

end
for each set m ∈ M do

if one of the values taken by t on the elements of m lies in (0, 1) then M ← M \ {m}
end
if M does not have the form {{uζ }}, or if Qλ(uζ ) = 0 then return fail
/* Reduce back to original critical point system */

[P,Q, U] ← NumKronecker(P,Q, κ) where κ = Õ(hD2) is sufficient precision to group
the roots of P̃ by the distinct values they give to each z j = Q̃ j/P̃

′ using Lemma 7.5
Determine the root uζ of P corresponding to ζ from the numerical approximations
/* Return the set of minimal critical points */

Refine U to isolating regions of size at most 2−κ , where κ = Õ(hδ3D3) is sufficient to
identify elements with same coordinate-wise modulus using Corollary 7.1

return set of u ∈ U such that |Q j (u)/P
′(u) | = Q j (uζ )/P

′(uζ ) for 1 ≤ j ≤ d

representations, and alternative encodings of finite algebraic sets. An algebraic tool-
box of methods using the numeric Kronecker representation to decide the properties
we require for our asymptotic arguments is developed. Treating the results of Sec-
tion 7.3 as a black box yields Algorithms 1– 3 implementing Theorem 7.1, whose
proof is completed in Section 7.4. The procedures Kronecker(f) and NumKro-
necker(f, κ) for computing Kronecker and numeric Kronecker representations are
discussed in Proposition 7.3 and Proposition 7.5, respectively.

7.2.1 Examples

We now work through some examples, starting by revisiting the Apéry numbers. As
usual, worksheets illustrating these examples can be found on the textbook website.

Example 7.3 (Apéry Revisited)
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Algorithm 3: MinimalCriticalGen
Input: Polynomial H(z), direction r ∈ Nd and Kronecker representation [P,Q, u] of the

set of smooth critical points in some direction r
Output: Set U of roots of P corresponding to the minimal critical points
/* Determine the extended critical point system */

S̃ ← Polynomials in (7.3)–(7.8)
[P̃, Q̃] ← Kronecker(S̃)
/* Construct the set of minimal critical points */

[P̃, Q̃, Ũ] ← NumKronecker(P̃, Q̃, κ) where κ = Õ(hδ8D8) is sufficient precision to
group the roots of P̃ by the distinct values they give to each Q̃ai /P̃

′ and Q̃bi /P̃
′ using

Lemma 7.5 and determine when t lies in (0, 1) using Lemma 7.4
S ← {Ũ}
for each v ∈ {a1, . . . , ad, b1, . . . , bd } do

Split apart each set in S by the distinct values its elements give Q̃v (u)/P̃
′(u)

end
for each set s ∈ S do

if there exists an index j such that a j = b j = 0 on the elements of s then return FAIL
if t has a value in (0, 1) at some element of s then S ← S \ {s}

end
Sa,b ← numerical approximations of (a, b) determined by elements of S
/* Return the minimal critical points */

[P,Q, U] ← NumKronecker(P,Q, κ) where κ = Õ(hδ2D2) is sufficient precision to
identify which elements have (a, b) in Sa,b using Lemma 7.5

return roots of P defining z = a + ib for (a, b) ∈ Sa,b

Let us trace through our algorithms on the combinatorial function

∆

(
1

H(w, x, y, z)

)
= ∆

(
1

1 − w(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

)
.

To begin we form the polynomial system

S =
{
H(w, x, y, z),wHw − λ, xHx − λ, yHy − λ, zHz − λ,H(tw, t x, ty, tw)

}
.

Using a Gröbner basis method discussed in Section 7.3, we can compute a Kronecker
representation [P̃, Q̃] of V(S) by taking u as a random integer linear combination
of w, x, y, and z. For instance, taking u = w + t results in a parametrization where
P̃ is a polynomial of degree 14 with integer coefficients at most 17 digits long,
and Q̃w, Q̃x, Q̃y, Q̃z, Q̃λ and Q̃t are polynomials of degree at most 13 with integer
coefficients at most 18 digits long. Each element of V(S) is encoded by a root of
P̃(u), and the critical points, determined by the elements of V(S) where t = 1, are
given by the values of u that are roots of

P(u) = gcd(P̃, P̃′ − Q̃t ) = u2 + 162u − 167.

Since P is quadratic, we can find its roots u1, u2 exactly to get the critical points
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Q̃w(u1)

P̃′(u1)
,

Q̃x(u1)

P̃′(u1)
,

Q̃y(u1)

P̃′(u1)
,

Q̃z(u1)

P̃′(u1)

)
=

(
−82 + 58

√
2, 1 +

√
2, 1/
√

2, 1/
√

2
)

≈ (0.02 . . . , 2.41 . . . , 0.707 . . . , 0.707 . . . )(
Q̃w(u2)

P̃′(u2)
,

Q̃x(u2)

P̃′(u2)
,

Q̃y(u2)

P̃′(u2)
,

Q̃z(u2)

P̃′(u2)

)
=

(
−82 − 58

√
2, 1 −

√
2,−1/

√
2,−1/

√
2
)

≈ (−164.02 . . . ,−0.4 . . . ,−0.7 . . . ,−0.7 . . . ) .

The numeric Kronecker representation is obtained by approximating the roots of
P̃(u) = 0 to a sufficiently high precision; substituting these values into Q̃t (u)/P̃′(u)
shows no element of V(S) has t in (0, 1), meaning the critical point with positive
coordinates is minimal (as we have shown in previous chapters by hand).

Sincewe now care only about the critical points, where t = 1, wemay replace P̃(u)
by P(u) and reduce the Q̃v polynomials accordingly. In particular, the extended
Euclidean algorithm can be used to determine the inverse P̃′(u)−1 of P̃′(u) modulo
the polynomial P(u). If we define

Qv(u) = Qv(u)P′(u)P̃′(u)−1 mod P(u)

for v ∈ {w, x, y, z} then [P,Q] defines a Kronecker representation

P(u) = u2 + 162u − 167 = 0,

w =
−164u + 172

P′(u)
, x =

2u + 394
P′(u)

, y = z =
116

P′(u)
, λ = −1

of the critical points (alternatively, one could recompute a Kronecker representation
from scratch using a Gröbner basis computation).

Building the matrix H in (5.25), multiplying by zHz , and taking the determi-
nant gives det H̃ as a polynomial in x, y,w, and z. Incorporating this polynomial
and T = wxyz into the Kronecker representation parametrizes

det H̃ =
96u − 112

P′(u)
and T =

34u − 30
P′(u)

at the critical points. Putting everything together, and noting the numerator G = 1 in
this example, the algorithm returns

fn,n,n,n =

(∑
u∈U

(
u + 81

17u − 15

)n (
1

4π3/2n3/2

) √
u + 81

28 − 24u

) (
1 +O

(
1
n

))
where U = {u1} is the real root 1.0243 . . . of P̃(u) = u2 + 162u − 167.
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Example 7.4 (Two Critical Points with Positive Coordinates)

The bivariate rational function

F(x, y) =
1

(1 − x − y)(20 − x − 40y) − 1
=

1
1 − x − y

×
1

20 − x − ty − 1
1−x−y

is combinatorial and has a smooth singular variety. Computing a Kronecker repre-
sentation of the algebraic set defined by

H(x, y) = xHx(x, y) − λ = yHy(x, y) − λ = H(t x, ty) = 0

shows that there are four critical points, given by the solutions where t = 1. Two of
the critical points,

(x1, y1) ≈ (0.549, 0.309) and (x2, y2) ≈ (9.997, 0.252),

have positive coordinates; since x1 < x2 while y1 > y2 it is not clear which of
the points (if any) is minimal. Examining the full set of real solutions encoded by
the Kronecker representation, not just those where t = 1, shows there is a point
t(x2, y2) ∈ V where t ≈ 0.092, meaning (x2, y2) is not minimal. If t(x1, y1) ∈ V

then t ≥ 1, so (x1, y1) is a smooth minimal critical point4. After verifying there is no
other critical point with the same coordinate-wise modulus, we obtain asymptotics

C(u1)
nn−1/2

(
π−1/2 A(u1)

√
B(u1) +O

(
1
n

))
= (5.884 . . . )nn−1/2

(
0.054 . . . +O

(
1
n

))
,

where A, B,C ∈ Z(u) and u1 is a real algebraic number specified by its degree four
minimal polynomial.

Example 7.5 (A Non-Combinatorial Series Expansion)

Baryshnikov et al. [1] studied the family of rational functions

Fc(x, y, z) =
1

1 − (x + y + z) + cxyz

to determine which values of c ∈ R result in eventually positive diagonal sequences.
Our algorithms automatically derive such asymptotic results for fixed values of c.
For example5, if c = 81/8 and we consider the main diagonal direction then there
are three critical points (x, y, z), defined by

4 In fact there is another point on the line segment from the origin to (x1, y1), but this point has the
form t(x1, y1) where t ≈ 1.709 > 1.
5 Our choice of c simplifies the critical points obtained for this example, but our algorithms work
for any value of c.
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x = y = z ∈
{
−2/3,−1/3 ± i/

(
3
√

3
)}
.

Computing a Kronecker representation shows that the system (7.3)–(7.8) admits
solutions with 0 < t < 1. In particular, at any root of the system with 0 < t < 1
either t = 1/3 or t ≈ 0.3451 satisfies 81t3 + 36t2 + 4t − 9 = 0. Algorithm 3 proves
that (−2/3,−2/3,−2/3) is the only non-minimal critical point, ultimately showing
that the power series diagonal has dominant asymptotics(

i81
√

3/8
)n 3
√

3 + 3i
8πn

+
(
−i81
√

3/8
)n 3
√

3 − 3i
8πn

=

(
81
√

3
8

)n
3 cos

(
π
6 +

πn
2

)
2nπ

.

Going back to the original motivations of Baryshnikov et al. [1], our algorithm proves
that when c = 81/8 the diagonal sequence contains an infinite number of negative
terms and an infinite number of positive terms.

Our approach to proving minimality using Proposition 7.1 is flexible enough
to help even when the direction r is taken as a parameter. When the argument
goes through, proving minimality is reduced to certifying that a univariate polyno-
mial pr(t) in t whose coefficients are algebraic quantities in r has no root t ∈ (0, 1)
when r lies in some range of interest. An invaluable tool for these arguments is
Sturm’s theorem for real root counting.

Definition 7.6 (Sturm sequences and sign changes) If f (t) is a polynomial in R[t]
of degree δ then the Sturm sequence of f is the finite sequence of polynomials
g0, . . . , gδ defined by

g0(t) = f (t), g1(t) = f ′(t), gn = −rem(gn−2, gn−1) (1 ≤ n ≤ δ),

where rem(gn−2, gn−1) is the polynomial remainder when dividing gn−2 by gn−1.
For t ∈ R the sign variation of f at t, denoted Vf (t), is the number of sign changes
between consecutive elements in the sequence g0(t), . . . , gδ(t), ignoring zeroes.

Proposition 7.2 (Sturm’s Theorem) The number of zeroes of f (t) ∈ R[t] in the
interval (a, b] for any a, b ∈ R with a < b equals Vf (b) − Vf (a). In particular, if the
Sturm sequence of f (t) has the same number of sign alternations when t = a and
t = b then there are no roots of f (t) in (a, b].

A proof of Proposition 7.2 can be found in [2, Thm 2.50].

Example 7.6 (Distribution of Leaves in Planar Trees)

Recall from Chapter 3 that the number of rooted planar trees on n nodes with k
leaves is the coefficient of uk znyn in the power series expansion of

F(u, z, y) =
G(u, z, y)
H(u, z, y)

=
y(uyz − yz − 2y + 1)
1 + uyz − uz − yz − y

.
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Note that the power series of F has negative coefficients away from the terms
of combinatorial of interest. Forming the system (7.3)–(7.8) with r = (s, 1, 1) as a
parameter and computing a lexicographic Gröbner basis, as described in Section 7.3,
shows that there is a single critical point of F,

(u, z,w) =
(

s2

(s − 1)2
,
(s − 1)2

s
, s

)
,

and that the value of t at any solution of (7.3)–(7.8) satisfies

(t − 1)p1(t)p2(t)p3(t)p4(t) = 0,

where p1, p2, p3, p4 are explicit polynomials in t with coefficients in Z[s]. Minimality
of the critical point for 0 < s < 1 follows from showing that p1, p2, p3, p4 have no
root with t ∈ (0, 1) for those values of s (note that s < 1 since a tree cannot have
more leaves than nodes). We prove this for

p1(t) = s4t2 − (3s2 − 2s + 1)t + 1;

the arguments for p2, p3, and p4, which are cubic in t, are analogous and given in the
worksheet for this example. The Sturm sequence for p1(t) evaluated at t = 0 is

v0 =

(
1,−3s2 + 2s − 1,

(5s2 − 2s + 1)(s − 1)2

4s4

)
while evaluated at t = 1 it becomes

v1 =

(
s(s + 2)(s − 1)2, (s − 1)(2s3 + 2s2 − s + 1),

(5s2 − 2s + 1)(s − 1)2

4s4

)
.

Whenever 0 < s < 1 the signs of the elements of v0 and v1 both form the sequence
(+,−,+), containing 2 sign changes, so p1(t) has no root with 0 < t ≤ 1.

Repeating this process with p2, p3, and p4 shows the critical point is minimal,
ultimately obtaining asymptotics

[usnznyn]F(u, z, y) =
1

2πn2

(
1

s2s(1 − s)2s+2

)n (
1 +O

(
1
n

))
for the number of rooted plane trees with n nodes and k = sn leaves.

7.3 Data Structures for Polynomial System Solving

In order to implement our algorithms for asymptotics we need techniques for ma-
nipulating the solutions of polynomial systems. We thus give a brief overview of
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this vast area of mathematics which, out of necessity, is highly tailored to our needs.
Those wanting a deeper introduction can turn to the lovely book of Cox et al. [10]
or, for an exhaustive look at the topic, to the book series of Mora [28, 29, 30, 31].

7.3.1 Gröbner Bases and Triangular Systems

We start by encoding polynomial systems and their solutions.

Definition 7.7 (ideals and algebraic sets) Given a finite collection of polynomials
f1(z), . . . , fr (z) in Q[z], the ideal of Q[z] generated by the fj is the set

( f1, . . . , fr ) =


r∑
j=0

gj(z) fj(z) : gj(z) ∈ Q[z]
 .

Equivalently, ( f1, . . . , fr ) is the smallest set containing the fj which is closed under
addition of elements in the set and closed under multiplication by any element
of Q[z]. The algebraic set or variety6 defined by f1(z), . . . , fr (z) ∈ Q[z] is the set of
their common solutions

V( f1, . . . , fr ) = {z ∈ Cd : f1(z) = · · · = fr (z) = 0}.

If two sets of polynomials f = { f1, . . . , fr } and g = {g1, . . . , gs} generate the same
ideal, then each fj can be written as aQ[z]-linear combination of the gk polynomials,
and vice-versa. In particular, f and g vanish on the same set of points, meaning
V( f1, . . . , fr ) = V(g1, . . . , gs). It thus makes sense to talk about the variety defined
by an ideal, and symbolically ‘solving’ the polynomial system f1 = · · · = fr = 0 can
be viewed as finding a particularly nice generating set for the ideal ( f1, . . . , fr ).

Definition 7.8 (zero-dimensional ideals) An ideal I is zero-dimensional ifV(I) is
finite, and a polynomial system is zero-dimensional if its elements generate a zero-
dimensional ideal (in other words, the polynomials have a finite number of common
roots in Cd).

If all fj polynomials are linear then one way to determineV( f1, . . . , fr ) is taught
in a first class on linear algebra: put the coefficients of the polynomials in amatrix and
perform Gaussian elimination. At the polynomial level, this corresponds to taking
linear combinations of the fj in order to determine a new generating set gk where,
for instance, the variable z1 appears only in g1, the variable z2 appears only in g2,
etc. Trying to mirror this construction for non-linear polynomials immediately runs
into a problem: if we want to systematically cancel terms in the fj polynomials to
determine a ‘simpler’ generating set, we need away of determiningwhichmonomials

6 Some authors reserve the name variety for irreducible algebraic sets, but we do not make this
distinction. Unlike in Chapter 5, here we only consider algebraic sets in Cd (we do not need
projective space).
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to cancel first. We thus need a way of sorting the monomials which appear, which is
facilitated by the following definitions.

Definition 7.9 (total and monomial orderings) A total order on a set S is a binary
relation � on S such that for all a, b, c ∈ S: either a � b or b � a, the order is
antisymmetric (if a � b and b � a then a = b), and the order is transitive (if a � b
and b � c then a � c). Amonomial ordering is a total order � on monomials zi with
i ∈ Nd such that for all a, b, c ∈ Nd: (1) if za � zb then za+c � zb+c and (2) za � 1.

Common monomial orders include

lexicographic: za �lex zb if the leftmost non-zero entry of a−b is positive.
Equivalently, monomials are first ordered by their powers
of z1, with ties broken by their powers of z2, then z3, etc.
For instance, z3

1 z2
2 �lex z2

1 z3
2 �lex z2

1 �lex z1z100
2 .

graded lexicographic: za �gr zb if za has larger degree than zb, or if they have
the same degree and za �lex zb. Monomials are sorted by
degree, with ties broken by the lexicographic order. For in-
stance, z1z100

2 �gr z3
1 z2

2 �gr z2
1 z3

2 �gr z2
1 .

reverse graded lex.: za �rv zb if za has larger degree than zb, or if they have the
same degree and the rightmost non-zero entry of a − b is
negative. Monomials are sorted by degree, with ties broken
by the reverse ordering to the lexicographic order when
the sequence of the variables is also reversed. For instance,
z6
2 �rc z3

1 z2
2 �rv z2

1 z3
2 �rv z5

1 .

Definition 7.10 (leading terms and Gröbner bases) Fix a monomial order �. The
leading term of a polynomial f ∈ Q[z] is the term appearing in f which is largest
under �. Given an ideal I = ( f1, . . . , fr ) the leading terms of all polynomials in I
form another ideal LT(I), called the leading term ideal of I, which is not necessarily
generated by the leading terms of the generating set fj . AGröbner basis of the ideal I
is a finite generating set g1, . . . , gs of I such that the ideal generated by the leading
terms of the gj is LT(I). A reduced Gröbner basis is a Gröbner basis such that no
leading term of a generating polynomial lies in the ideal generated by the leading
terms of the other generating polynomials, and whose polynomials are normalized
to have leading terms with coefficient 1.

Gröbner bases were introduced in the 1960s by Buchburger [5, 6], who gave an
algorithm for their calculation (they exist for any ideal and ordering) and proved
several of their remarkable properties. The reduced Gröbner basis of an ideal under
a fixed monomial order is unique, and a Gröbner basis of an ideal I = ( f1, . . . , fr )
with respect to any order contains the polynomial 1 if and only if the polynomial
system f1 = · · · = fr = 0 has no solution in Cd . Buchburger’s algorithm, which
reduces to the Euclidean algorithm for univariate polynomials and Gaussian elimi-
nation for multivariate linear polynomials, consists of taking two polynomials f , g
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from the generating set f of an ideal, taking the smallest degree monomial linear
combination that results in a polynomial with smaller leading term, reducing this
new polynomial through multivariate polynomial division with f, then adding the
result to the generating set and repeating the procedure until no new generators are
found. More efficient algorithms to compute Gröbner bases have been developed,
notably the F4 and F5 algorithms of Faugére [13, 14], and most computer algebra
systems contain built-in procedures to compute Gröbner bases after one specifies a
monomial order.

Example 7.7 (Apéry Critical Points)

The Apéry sequence is the main diagonal of the rational function 1/H(w, x, y, z)
where H(w, x, y, z) = 1−w(1+ x)(1+ y)(1+ z)(1+ y + z + yz + xyz), in which case
the polynomials in the smooth critical point system (5.16) form the ideal

I = (H, xHx − yHy, xHx − zHz, xHx − wHw).

TheGroebner[Basis] command inMaple, when given the ideal I and lexicographic
order where x � y � z � w, returns the Gröbner basis

G = (w2 + 164w − 4, 116z − w − 82, 116y − w − 82, 58x − w − 140).

Since I = G impliesV(I) = V(G), the critical points satisfy the system

w2 + 164w − 4 = 0
116z − w − 82 = 0
116y − w − 82 = 0
58x − w − 140 = 0,

and can be determined by solving the first equation for w then substituting the value
of w in the remaining equations and solving for the remaining variables.

The fact that a lexicographic Gröbner basis gives a nice set of generators for
solving the critical point system in this example is not a coincidence. Given a (finite
or infinite) set S ⊂ Q[z] and natural number 0 ≤ ` ≤ d−1, let S` denote the elements
of S containing only the variables z`+1, . . . , zd .

Theorem 7.2 (Elimination Theorem of Lexicographic Gröbner Bases) Let I ⊂
Q[z] be an ideal and G = {g1, . . . , gr } be a Gröbner basis of I with respect to the
lexicographic monomial order where z1 � · · · � zd . Then for any 0 ≤ ` ≤ d − 1 the
set I` is an ideal of Q[z`+1, . . . , zd] with lexicographic Gröbner basis G` .

Theorem 7.2 says that the finite set G` , obtained immediately by inspection from G,
generates the ideal of elements in I which contain only the variables z`+1, . . . , zd .

Proof That I` is an ideal follows directly from the fact that I is an ideal. Let
f ∈ I` , so that f ∈ Q[z`+1, . . . , zd]. Since f ∈ I and G is a Gröbner basis of I,



284 7 Automated Analytic Combinatorics

LT( f ) is in the ideal generated by the leading terms of G. Because each leading
term is a monomial, it follows that LT( f ) is divisible by LT(g) for some g ∈ G.
But then LT( f ) ∈ Q[z`+1, . . . , zd] implies LT(g) ∈ Q[z`+1, . . . , zd]. Because G is
a Gröbner basis with respect to the lexicographic order where z1 � · · · � zd ,
LT(g) ∈ Q[z`+1, . . . , zd] implies g ∈ Q[z`+1, . . . , zd]: if g contained a term with a
variable zk for 1 ≤ k ≤ ` then by the definition of the lexicographic order such a
variable with smallest index would also appear in its leading term.

We have shown f ∈ I` implies LT( f ) is in the ideal LT(G`). Each element of G
is in I, so the ideal (G`) generated by G` is contained in I` . Towards a contradiction
suppose I` , (G`) and pick f ∈ I` \ (G`) with minimal leading term under the
lexicographic order. Then LT( f ) = LT(g) for some g ∈ (G`). The leading term
of f − g ∈ I` is smaller than LT( f ) under the lexicographic order, so by minimality
of f we have f − g ∈ (G`) which contradicts f < (G`). In particular, it must be the
case that I` = (G`) and G` is a Gröbner basis under the lexicographic order. �

This naturally suggests a method to encode an algebraic set in order to easily
determine and manipulate its elements.

Definition 7.11 (triangular systems)A (finite) triangular system7 is a system of the
form

P1(z1) = 0
P2(z1, z2) = 0

...

Pd(z1, . . . , zd) = 0,

where each Pk ∈ Q[z1, . . . , zk] is monic in zk .

Theorem 7.2 shows a strong connection between triangular systems and lexico-
graphical Gröbner bases: if the ideal I is zero-dimensional thenV(I) can be written
as the union of the zeroes of a finite number of triangular systems, and such systems
can be easily determined from a lexicographical Gröbner basis of I; see Lazard [24]
for additional details on this approach. One can then approximate or, when possi-
ble, exactly determine the elements of V(I) by iteratively solving the sequence of
polynomial equations in each triangular system.

Example 7.8 (An Extended Critical Point System)

Consider again the rational function 1/H(w, x, y, z) where H(w, x, y, z) = 1 − w(1 +
x)(1+ y)(1+ z)(1+ y+ z+ yz+ xyz). Since the symmetries of the main diagonal hide
some of the complexities which arise in general, we now consider asymptotics of the
r = (2, 1, 1, 1)-diagonal. The polynomials in the extended critical point system (7.2),
which allows us to determine minimality, form the ideal

7 Triangular systems are also known as regular chains, simple systems, or simple extensions
(sometimes with small differences in definition, depending on the author).
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I = (H,wHw − 2λ, xHx − λ, xHx − λ, yHy − λ, zHz − λ, H̃) ⊂ Q[w, x, y, z, λ, t]

where H̃(t,w, x, y, z) = H(tw, t x, ty, tw). The reduced lexicographical Gröbner ba-
sis G of I with respect to the ordering of variables λ � w � x � y � z � t contains
an element of the form S(t) = (t − 1)R(t), where R(t) is a polynomial of degree 18
in t. That S(t) factors reflects the fact that we can write V(I) = V(J) ∪ V(K) for
ideals J,K ( Q[w, x, y, z, λ, t]. The factor t − 1 corresponds to the actual critical
points of H, where t = 1, while the real solutions of the factor R(t) encode points on
the lines containing the origin and these critical points.

This factorization of S(t) also implies V(I) is the union of the zeroes of two
triangular systems. Replacing S(t) by t −1 in G and recomputing the lexicographical
Gröbner basis gives the set of polynomials

{t−1, 6z3−7z2−5z+2, y−z, 6z2+4x−3z−3, 4482z2+72w−8355z+2114, 2λ+1},

which form a triangular system. Similarly, replacing S(t) by R(t) in G and recom-
puting the lexicographical Gröbner basis gives another set of polynomials

{R(t),U1(t, z),U2(t, y),U3(t, x),U4(t,w), 2λ + 1},

where U1,U2, and U3 are linear in z, y, x, and w, respectively. Unfortunately, the Uj

polynomials are extremely large: each is a polynomial of degree 17 whose smallest
non-zero coefficient is 51 decimal digits long! Our introduction of the Kronecker
representation is motivated in large part by wanting to deal with polynomials whose
coefficients have a more manageable size.

The complexity of computing Gröbner bases is well studied, yet tricky to pin
down precisely. Doubly-exponential lower bounds are known in the worst case [20],
yet implementations in computer algebra systems run reasonably well on many ap-
plications. As a practical matter, lexicographic Gröbner bases (often desired for
their elimination property) are typically larger and take longer to compute than
Gröbner bases with respect to other orders8. There are algorithms which convert
between Gröbner bases with respect to different orders, allowing one to compute
a basis with respect to a computationally well-chosen order then convert to a lexi-
cographic basis for its elimination properties. Especially useful for this conversion
on zero-dimensional ideals is the FGLM algorithm of Faugére et al. [12]. Perhaps
surprisingly, under one natural measurement the most efficient order for a Gröbner
basis is the reverse graded lexicographic order [3].

Although useful for encoding finite algebraic sets, triangular systems have some
drawbacks (for instance, iteratively solving polynomial equations for each variable
can obscure which solutions are have real coordinates). Instead of going deeper into

8 To quote from the deep analysis of Bayer and Stillman [3], “. . . use of the lexicographic order in
computations can unequivocally be discouraged, in favor of more carefully chosen orders.”
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the theory of triangular systems, we move on to different representations of algebraic
sets more suited to our needs.

7.3.2 Univariate Representations

The key to our algorithms is the parametrization of a finite algebraic set by a
univariate polynomial in one variable, with the other coordinates being well-chosen
rational functions in that variable. We rely heavily on the results of the appendix to
this chapter, which summarize important properties of univariate polynomials. With
that in mind, let I ⊂ Q[z] be a zero-dimensional ideal and introduce a new variable u
satisfying

u = κ1z1 + · · · + κdzd (7.11)

for some κj ∈ Z. Geometrically, introducing u corresponds to parameterizing the
elements ofV(I) by the level sets of the hyperplane with normal κ.

Definition 7.12 (separating linear forms) The variable u in (7.11) is called a sep-
arating linear form if it takes distinct values for each z ∈ V(I).

Because we care mainly aboutV(I), and the zero set of a polynomial is unchanged
when taking positive powers, we introduce the following concept.

Definition 7.13 (radical of an ideal) The radical of an ideal K ⊂ Q[x] is the set√
K consisting of f ∈ Q[x] such that f n ∈ K for some n ∈ N.

Remark 7.5 The radical of an ideal K is itself an ideal of Q[x], and is as the largest
ideal in Q[x] such that V(K) = V(

√
K). The radical of an ideal can be computed

using Gröbner bases [4, Ch. 8.2].

Let J ⊂ Q[z, u] be the radical of the ideal generated by a zero-dimensional
ideal I together with the polynomial u − κ · z. When u is a separating linear form
then the shape lemma [15, Prop. 1.6] states that the reduced Gröbner basis of J
with respect to the lexicographic ordering where z1 � · · · � zd � u consists of a
univariate polynomial P(u) with no repeated roots together with polynomials of the
form zj − Rj(u) for 1 ≤ j ≤ d. Conversely, if V(J) has a triangular system of this
form then u is separating. To determine the elements of V(I) one simply needs to
solve the univariate polynomial P(u) and substitute the result into each Rj . In fact, if
the κj are picked at random there is a good chance to obtain a separating linear form.

Lemma 7.1 Suppose a zero-dimensional ideal I is generated by d polynomials in
the variables z1, . . . , zd , each of degree at most δ. If each κj in (7.11) is chosen
uniformly at random from a finite set S ⊂ Z then the probability that the variable u
defined by (7.11) takes distinct values at the elements ofV(I) satisfies

P[u not distinct at elements ofV(I)] ≤
(D

2
)
|S |

,
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where D = δd . In particular, if S has at least
(D

2
)
elements then some assignment

of κ ∈ Sd produces a linear form u which takes distinct values for z ∈ V(I).

Proof Bézout’s theorem [38] implies that a polynomial system with a finite number
of solutions defined by d equations in d variables, each of degree at most δ, has at
most D solutions. Thus, we may write V(I) = {z1, . . . , zr } for r ≤ D with each zj
distinct. If u(z, κ) denotes the right-hand side of (7.11), the linear form u takes distinct
values at the elements ofV(I) if and only if the polynomial

P(κ) =
∏
i< j

(
u(zi, κ) − u(zj, κ)

)
is non-zero. Problem 7.3 asks you to prove the Schwartz-Zippel lemma, stating that
the probability P(κ) vanishes when each κj is chosen randomly from a finite set S is
at most deg P/|S |. This gives the desired bound. �

The solutions of systems satisfying the shape lemma can be parametrized by a
single variable, which is convenient, but the polynomials in these systems can still
have extremely large coefficient sizes.

Example 7.9 (Large Coefficient Sizes in a Univariate Representation)

Consider again the extended critical point system forming the ideal

I = (H,wHw − 2λ, xHx − λ, xHx − λ, yHy − λ, zHz − λ, H̃)

where H(w, x, y, z) = 1−w(1+x)(1+y)(1+z)(1+y+z+yz+xyz) and H̃(t,w, x, y, z) =
H(tw, t x, ty, tw). Introducing the polynomial u − t − x, the reduced lexicographical
Gröbner basis with respect to the ordering of variables λ � w � x � y � z � t � u
has the expected form

G = {P(u), t − R1(u),w − R2(u), z − R3(u), y − R4(u), x − R5(u), 2λ + 1},

where P has degree 21 and the Rj polynomials have degree 20. Unfortunately,
the coefficients of the Rj polynomials are rational numbers whose numerators and
denominators have approximately 160 decimal digits!

Effective versions of the arithmetic Nullstellensätz [23, Thm. 1] imply that the
maximum height of the polynomials P, Rj appearing in a triangular system when u
is a separating linear form is bounded by Õ(hδ2d), and this upper bound appears in
practice (such as the last example). We thus turn to the Kronecker representation,
which contains polynomials with heights bounded in Õ(hδd). As the height of a
polynomial is the bitsize of the coefficients, this will make our computations much
more tractable.
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7.3.2.1 The Symbolic Kronecker Representation

Recall from Section 7.2 that a Kronecker representation [P(u),Q] of a finite algebraic
set A ⊂ Cd is defined by a separating linear form

u = κ1z1 + · · · + κdzd ∈ Z[z],

square-free polynomial P ∈ Z[u], and Q ∈ Z[u]d of degrees less than deg P such
that A is determined by the z-coordinates of the solutions of the system

P(u) = 0,


P′(u)z1 −Q1(u) = 0,

...
P′(u)zd −Qd(u) = 0.

Definition 7.14 (Kronecker degrees and heights) The degree of a Kronecker rep-
resentation is the degree of P, and the height of a Kronecker representation is the
maximum height of its polynomials P,Q1, . . . ,Qd .

The following result, contained in Schost [39], suggests that the coefficients appear-
ing inKronecker representations will bemuch smaller than the coefficients appearing
in triangular systems.

Lemma 7.2 Let f ∈ Z[z]d be a set of polynomials of degree at most δ and heights at
most h, and let Z(f) be the solutions of f where the Jacobian matrix of f is invertible.
Then there exists a Kronecker representation of Z(f) of degree at most D = δd and
height Õ(hD).

Remark 7.6 The degree bound in Lemma 7.2 follows directly from Bézout’s theorem
bounding the number of elements of Z(f) ⊂ V(f). A full derivation of the height
bound is outside the scope of this text, but we give an intuitive motivation for the
(on first glance somewhat contrived) Kronecker representation9. Suppose u is a
separating linear form for a zero-dimensional ideal I and represent V(I) by the
solutions of a system

P(u) = 0, z1 = R1(u), . . . , zd = Rd(u)

for polynomials P ∈ Z[u] and Rj ∈ Q[u]. Since we are interested only in the
elements of V(I), not in the multiplicities of the elements, we may assume P is
square-free by replacing it with its square-free factorization if necessary. Thus,
P(u) = (u − u1) · · · (u − ur ) where the u j are the distinct roots of P in C. If z1 takes
the value aj ∈ C at the element of V(I) obtained by setting u = u j then we can
determine the polynomial R1(u) by interpolation, since knowing R1(u j) = aj implies

9 Thanks to Éric Schost for providing this explanation.
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R1(u) =
d∑
j=1

aj

∏
k,j

(
u − uk
u j − uk

)
=

d∑
j=1

aj∏
k,j(u j − uk)

∏
k,j

(u − uk)

=

d∑
j=1

aj

P′(u j)

∏
k,j

(u − uk).

To express R1(u) as a polynomialwith rational coefficients onemust put fractions over
a common denominator, multiplying the values aj by different evaluations P′(u j),
which essentially leads to an extra factor of D in the heights of the Rj polynomials.
From this perspective it is clearly natural to encode the values of each zj/P′(u)
instead of just zj , leading to the Kronecker representation.

By Lemma 7.1, a separating linear form can be determined with high probability
by randomly selecting the coefficients κ in a finite set of integers of sufficient size.
For a given choice of κ one can compute a Kronecker representation of f, when
u is separating, by using a lexicographical Gröbner basis of the radical of (f) to
determine polynomials P(u) and Rj(u) such thatV(f) = V(P, z1 − R1, . . . , zd − Rd)

and taking Q j(u) to be the remainder when the polynomial P′(u)Rj(u) is divided
by P(u). When u is not separating this can also be detected from a lexicographical
Gröbner basis. A more refined analysis can be found in Rouillier [35].

Example 7.10 (A Kronecker Representation)

In the last example we took the ideal

I = (H,wHw − 2λ, xHx − λ, xHx − λ, yHy − λ, zHz − λ, H̃)

with H(w, x, y, z) = 1−w(1+x)(1+y)(1+z)(1+y+z+yz+xyz) and H̃(t,w, x, y, z) =
H(tw, t x, ty, tw), introduced the linear form u − t − x, and obtained a Gröbner basis
of the form

G = {P(u), t − R1(u),w − R2(u), z − R3(u), y − R4(u), x − R5(u), 2λ + 1}

which implies u is a separating linear form. If we define, for instance, Q1(u) to be
the remainder when R1(u)P′(u) is divided by the polynomial P(u) then Q1(u) is a
polynomial of degree 20 whose coefficients each have approximately 17 decimal
digits. Though somewhat large for manual consideration, 17 decimal digits is an
order of magnitude smaller than the 160 digit integers appearing in R1(u).

Although this procedure determines a Kronecker representation, it relies on Gröb-
ner basis computations whose complexity is not well understood, and moves through
intermediate expressions with polynomials of large coefficient size. There are alter-
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native, Gröbner free, approaches to computing a Kronecker representation. The first
well-known example is the so-called geometric resolution algorithm of Giusti et
al. [16], but for our complexity results we rely on an algorithm of Safey el Din and
Schost [36] which uses a ‘homotopy-based approach’. To the best of our knowledge
neither of these approaches are implemented in a computer algebra system, so our
examples (and the ACSV package of Melczer and Salvy [26]) compute Kronecker
representations using lexicographic Gröbner bases. The next result follows from
Theorem 1 of Safey El Din and Schost [36].

Proposition 7.3 Let f ∈ Z[z]d be a polynomial system and Z(f) be the solutions of f
where the Jacobian matrix of f is invertible (this implies Z(f) is finite). Suppose the
polynomials in f have degree at most δ and heights at most h. Then there exists an
algorithm Kronecker that takes f as input and produces one of the following:

• a Kronecker representation of Z(f),
• a Kronecker representation of degree less than that of Z(f),
• fail.

The first outcome occurs with probability at least 21/32 and returns a Kronecker
representation of degree D = δd and height Õ(hD). In any case, the algorithm has
bit complexity Õ(hD3).

Repeating the algorithm k times, and taking the output with highest degree, allows
one to obtain a Kronecker representation of Z(f) with probability 1 − (11/32)k .
The probabilistic nature of Kronecker comes from randomly sampling a linear
form u with coefficients of reasonable size and choosing certain prime numbers at
different points in the algorithm. In practice the probabilistic issues are minor and
the probability bounds listed are quite pessimistic: see Giusti et al. [16] or Safey El
Din and Schost [36] for further discussion. When the Jacobian of f is invertible at
all of its solutions, as it will be under our assumptions (J1) and (J2), Proposition 7.3
gives a Kronecker representation of all solutions of f.

Our next proposition describes how to encode the values of additional polynomials
at the solutions of a Kronecker representation. Since the constants appearing in the
asymptotic expansion (5.27) of Theorem 5.2 in Chapter 5 are polynomials in the
critical points of F(z), this will allow us to determine an expansion of the form (7.9).

Proposition 7.4 Let f ∈ Z[z]d be a zero-dimensional polynomial system containing
polynomials of degree at most δ and heights at most h, and suppose [P(u),Q] is a
Kronecker representation ofV(f) determined by Proposition 7.3. Let q(z) ∈ Z[z] be
a polynomial of degree at most ρ and height at most η. Then

1. there exists a parametrization q(u) = Qq(u)/P′(u) of the values taken by q
on V(f), where Qq is an integer polynomial of degree less than D = δd and
height Õ((η+ hρ)D). The polynomial Qq can be computed in Õ((η+ hρ)D3) bit
operations;

2. there exists a polynomial Φq(T) ∈ Z[T] of degree at most D = δd and height
Õ((η + hρ)D2) which vanishes on all values taken by q(z) for z ∈ V(f). The
polynomial Φq can be computed in Õ((η + hρ)D4) bit operations;
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3. when q has degree 1 (for instance, if q is one of the variables zj) then there is a
polynomial Φq ∈ Z[T] vanishing on the values of q(z) for z ∈ V(f) which has
degree at most D = δd and height Õ((η + h)D), and Φq can be computed in
Õ((η + h)D3) bit operations.

Proposition 7.4 (1) is proven by adding the polynomial T − q(z) into f, where T is a
newvariable, and recomputing theKronecker representation. In order to get the stated
height and complexity bound, a more refined method of Safey El Din and Schost [36]
must be used which exploits the structure of the new system, since T appears in only
one equation. This refinement requires an additional algebraic framework whose
setup would take us away from our main focus, so we refer the reader to Melczer and
Salvy [26, Prop. 45]. In practice one does not actually need to recompute the entire
Kronecker system.

Recall the resultant from Problem 2.14 in Chapter 2. The minimal polynomialΦq

in Proposition 7.4 (2) divides the resultant of the polynomials P′(u) − TQq(u) and
P(u) with respect to u, so the stated bounds on its height and degree follow from
Lemmas 7.8 and 7.11 in the appendix. The complexity of determining Φq follows
from a fast algorithm of Kedlaya and Umans [21] for determining the minimal
polynomial of Qq/P′ modulo the equation P(u) = 0. The improved height bound
on Φq when q is linear follows from Safey El Din and Schost [36, Lemma 23].

7.3.2.2 The Numeric Kronecker Representation

A Kronecker representation allows us to describe the solutions of a finite algebraic
set (for instance, the critical points of a multivariate rational function), but to argue
about specific solutions (for instance, the minimal critical points) we need extra
information about the roots. Because distinct elements encoded by a Kronecker
representation [P(u),Q] are represented by distinct roots of P(u), it is enough to
separate the roots of P(u) in the complex plane. A numeric Kronecker representation
is thus a triple [P(u),Q,U], where U contains isolating intervals for the real roots of
P and isolating disks for the complex roots of P.

Definition 7.15 (sizes of isolating regions) We say the size of an interval is half its
length, while the size of a disk is its radius.

Using the algorithms and results discussed in the appendix to this chapter, we
build up a toolbox of algorithms for manipulating the solutions of a (numeric)
Kronecker representation. Our first result, which follows directly from the algorithm
PolyRoots described in Lemma 7.12 of the appendix, discusses how to determine
the isolating regions U for the roots of P(u). One can compute the isolating regions
to arbitrary accuracy, with a minimal amount of accuracy required to ensure the
computed regions separate the (distinct) roots of P.

Proposition 7.5 Suppose the zero-dimensional system f = ( f1, . . . , fd) ∈ Z[z]d is
given by a Kronecker representation [P(u),Q] of degreeD and height η. Then there
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exists an algorithm NumKronecker which takes [P(u),Q] and κ > 0 and returns a
numeric Kronecker representation [P(u),Q,U], with isolating regions in U of size
at most 2−κ , in Õ(D3 +D2η +Dκ) bit operations.

Once we have a Kronecker representation, the most basic operation we can per-
form is to approximate the coordinates of the algebraic points it encodes.

Lemma 7.3 Given a Kronecker representation [P(u),Q] of degree D and height η
and κ ∈ N, approximations to the solutions of the Kronecker representation with
isolating regions for each coordinate of size 2−κ can be determined in Õ(d(D3 +

D2η +Dκ)) bit operations.

Proof Fix a coordinate zj and root v ∈ C of P(u) = 0. Our aim is to evaluate
zj = Q j(v)/P′(v) to an accuracy of 2−κ . Assume we have approximations q ≈ Q j(v)

and p ≈ P′(v) such that |Q j(v) − q |, |P′(v) − p| ≤ 2−n for some n ∈ N. Then����Q j(v)

P′(v)
−

q
p

���� = ����Q j(v)p − qp + qp − qP′(v)
P′(v)p

���� ≤ 2−n
(

1
|P′(v)|

+

���� q
P′(v)p

����) .
Suppose now that

n ≥ 2ηD + 2(D − 1) log2D − 2η + (D − 1) log2
√
D + 1 + 1 = Õ(ηD).

Proposition 7.7 (i) in the appendix implies |v | ≤ 2η + 1, so

|q | ≤ |Q j(v)| + 2−n ≤ 2η(1 + |v | + · · · + |v |d) + 2−a

≤ 2η(D + 1)(2η + 1)D + 2−n

= 2Õ(ηD).

Similarly, Proposition 7.7 (iv) in the appendix implies |P′(v)| ≥ 2−n+1 (in fact our
bound on n was chosen so that this inequality would hold) and

|p| ≥ |P′(v)| − 2−n ≥ 2−n = 2−Õ(ηD),

which means ����Q j(v)

P′(v)
−

q
p

���� ≤ 2−n+Õ(ηD).

To determine zj to precision κ it is therefore sufficient to determine Q j(v) and P′(v)
to κ + Õ(ηD) bits. Lemmas 7.12 and 7.13 in the appendix imply that this can be
done at all roots of P in Õ(D3 +D2η +Dκ) bit operations, and doing this for each
of the d coordinates gives the stated complexity. �

Todetermineminimalitywe need to select the solutions of aKronecker representation
which are positive and real, and test which have real coordinates in various ranges.

Lemma 7.4 Given a numeric Kronecker representation [P(u),Q,U] of degree D
and height η, it can be determined for every real solution to the underlying system



7.3 Data Structures for Polynomial System Solving 293

whether each coordinate is positive, negative, or exactly zero, in Õ(d(D3 + D2η))
bit operations.

Proof Fix a coordinate zj . The roots of P(u) that correspond to solutions with zj = 0
are exactly those canceling the polynomial G j(u) = gcd(P,Q j). By Lemma 7.10 in
the appendix, the gcd G j has height Õ(D + η) and can be computed in Õ(D2 + ηD)
bit operations. Using Proposition 7.7 and Lemma 7.12 from the appendix, the roots
of P(u) which also cancel G j(u) can be determined in Õ(D3 +D2η) bit operations
by computing isolating regions of the roots of size 2−Õ(D2+ηD). Proposition 7.7 in
the appendix shows that knowing approximations of Q j(u) and P′(u) to an accuracy
of 2−Õ(η) allows one to determine their signs when they are real, and Lemma 7.13
in the appendix shows that such approximations can be determined in Õ(ηD2) bit
operations knowing only Õ(ηD) bits of the roots of P(u). �

Having obtained high-accuracy approximations of the solutions of a critical point
system, we need to determine when specific coordinates of the solutions are exactly
equal, and when they share the same modulus. Proposition 7.4 gives a degree and
height bound on the minimal polynomial of the values of each coordinate zj at
the solutions of V(f). Using the root separation bounds in Proposition 7.7 of the
appendix and the algorithm for approximatingV(f) discussed in Lemma 7.3 results
in the following.

Lemma 7.5 Given a numeric Kronecker representation [P(u),Q,U] corresponding
to a zero-dimensional system of d polynomials of degrees at most δ and heights
at most h, the coordinates of its solutions which are exactly equal can be found
in Õ(hD3) bit operations, where D = δd .

The most complicated, and expensive, operation we must perform is grouping
solutions of an algebraic set by coordinate-wise modulus. To see why grouping by
modulus is so difficult, let A ∈ Z[u] be a polynomial of degree D and height η,
and let α, β ∈ C be roots of A with |α | , |β |. Proposition 7.7 in the appendix
gives a useful lower bound |α − β | ≥ 2−Õ(ηD) on the distance between α and β,
but it is much harder to get a good bound on the distance between the moduli
|α | and |β |. One approach to bounding the difference of |α | and |β| involves the
resultant R(u) = ResT (A(T),TDA(u/T)), which vanishes at the products of roots
of A(u). In particular, it vanishes at |α |2 = α α and |β |2 = β β so the polynomial
B(T) = R(

√
T)R(−

√
T) vanishes at |α | and |β |. Lemmas 7.8 and 7.11 of the appendix

imply that B(T) has degree at mostD and height in Õ(ηD2), so Proposition 7.7 in the
appendix yields | |α | − |β | | ≥ 2−Õ(ηD3). This is significantly worse than the distance
bound between α and β. In fact, a tight separation bound between the moduli of
roots of a univariate polynomial doesn’t seem to be known10.

10 A tight bound in the special case when α and β are both real (i.e., when one is positive and the
other negative) is given by Bugeaud et al. [8]. In this situation one can take f (δ, h) = O(hδ + δ2).
See also Bugeaud et al. [7] for some recent results and experiments with low degree polynomials.
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Open Problem 7.1 Under what conditions does there exist a function f (D, η) =
o(ηD3) such that | |α | − |β | | ≥ 2− f (D,η) whenever |α | , |β | and α and β are both
complex roots of some polynomial of degree D and height η?

Directly using a moduli separation bound of 2−Õ(ηD3) would increase the cost of
our ACSV algorithms. Luckily, in the combinatorial case we only need to determine
points with the same coordinate-wise moduli as critical points which themselves are
real and positive. This allows for a more efficient algorithm11.

Lemma 7.6 Let A ∈ Z[T] be a square-free polynomial of degree D ≥ 2 and
height η, and define G(T) = A(

√
T)A(−

√
T). If A(α) = 0 and A(±|α |) , 0, then��G (

|α |2
) �� ≥ 2−b where b = Õ(ηD2) is given by

b = (D2 − 1) log2(D + 1) + (2η + log2(D + 1))(D2 − 1)

+ 2ηD + 2D log2(D) +D log2

√
D2 + 1.

Proof Again we consider the resultant R(u) = ResT (A(T),TdA(u/T)) which van-
ishes at |α |2 for any root α of A(u). Lemma 7.11 of the appendix implies R has
degree at most D2 and height at most 2ηD + log((2D)!) ≤ 2ηD + 2D logD.
The polynomial G(T) has degree D and, by Lemma 7.8 of the appendix, height
at most 2η + log(D + 1). The stated bound on G(|α |2) then follows directly from
Proposition 7.7 (iii) in the appendix. �

Corollary 7.1 Under the same conditions as Lemma 7.6, isolating regions of
size 2−Õ(ηD2) for the real positive roots 0 < r1 < · · · < rk of A(T) and all roots of
moduli exactly r1, . . . , rk can be computed in Õ(ηD3) bit operations.

Proof Suppose α is a root of A and define the polynomial G(T) and constant b as in
Lemma 7.6. If a ∈ C is such that |α − a| < 2−b−η−2 then |α − a| < 2−b−η−2 and��|α |2 − aa

�� = |αα − αa + αa − aa| ≤ |α |2−b−η−2 + |a|2−b−η−2 ≤ 2−b

since |α | ≤ 2h + 1 by Proposition 7.7 in the appendix. Thus, approximating α to
Õ(ηD2) bits allows one to approximate |α |2 to Õ(ηD2) bits and, by Lemma 7.13 of
the appendix, this is sufficient to computeG

(
|α |2

)
to accuracy 2−b . Lemma 7.6 in the

appendix implies at least one of ±|α | is a root of A if and only if
��G (
|α |2

) �� < 2−b , so
approximating α to accuracy Õ(ηD2) bits allows one to decide whether or not at least
one of ±|α | is a root of A; this precision is also sufficient to decide which real roots
of A are positive. To determine which of ±|α | are roots of A, Proposition 7.7 in the
appendix implies it is sufficient to evaluate A(|α |) and A(−|α |) to precision 2−Õ(ηD2).
All these operations run in the stated complexity. �

Corollary 7.2 Given a numeric Kronecker representation [P(u),Q,U] of degree
D = δd and height η = Õ(hD) corresponding to a zero-dimensional system of d

11 Thanks to Bruno Salvy for this construction.
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polynomials in Z[z] of degrees at most δ and heights at most h, determining the
real solutions of the system and listing the solutions with the same coordinate-wise
moduli in the variables z can be done in Õ(hD4) bit operations.

7.4 Algorithmic ACSV Correctness and Complexity

We conclude this chapter by proving Theorem 7.1. Correctness of Algorithms 1–3
under our assumptions follows from Theorem 5.4 in Chapter 5, together with the
results in Section 5.3 of Chapter 5 characterizing minimality. Thus, it remains only
to prove the complexity bounds stated in Theorem 7.1.

Complexity of Algorithm 1 and Numerical Approximation of A(u), B(u), C(u)

The Kronecker representation of the set C of critical points can be determined
in Õ(hδ3D3) bit operations by Proposition 7.3, since C contains d + 1 variables.
The entries in the (d − 1) × (d − 1) matrix H̃ have degrees in Õ(δ) and heights in
Õ(h+log δ), so a cofactor expansion shows the determinant of H̃ has degree in Õ(dδ)
and height in Õ(d(h + log δ)). Proposition 7.4 then implies that the polynomial Q

H̃

has degree less than δD, height in Õ(hδ2D), and can be determined in Õ(hδ4D3) bit
operations. By assumption the polynomial G(z) has degree at most δ and height at
most h, and the polynomial T(z) = zr1

1 · · · z
rd
d

has degree O(d) and height 1. Thus,
Proposition 7.4 implies that the polynomials QT and Q−G fall into the degree and
height bounds for Q

H̃
, and can be determined in the same complexity. Knowing

these bounds, Proposition 7.7 (iii) implies that the roots of P(u) where Q
H̃
and QG

vanish can be determined by evaluating these polynomials to Õ(hδ2D2) bits, which
takes Õ(hδ3D3) bit operations using Lemmas 7.12 and 7.13 in the appendix.

With our degree and height bounds on the polynomials P(u), P′(u),Q
H̃
(u),

QT (u),Qλ(u), and Q−G(u), and the knowledge that Q
H̃
,QT (u), and Qλ(u) are non-

zero at the roots of P(u), an argument analogous to the one presented in the proof of
Lemma 7.3 shows that to determine

A(u) =
Q−G(u)
rdQλ(u)

, B(u) =
(rdQλ(u))d−1(P′)2−d

QH̃(u)
, C(u) =

P′(u)
QT (u)

at all roots of P(u) = 0 to κ bits of precision requires Õ(δDκ+hδ3D3) bit operations.
Note at least κ = Õ(hδ2D2) bits of precision are needed to isolate the roots of P(u).

Complexity of Algorithm 2

By Proposition 7.5, the numeric Kronecker representations can be determined to the
required accuracy in Õ(hδ2D2) bit operations. The most expensive operation is the
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determination of elements of U to Õ(hδ3D3) bits, in order to group critical points
of the same modulus. Determining the roots of P(u) to the required accuracy takes
Õ(hδ3D4) bit operations by Lemma 7.12 in the appendix, dominating the complexity.

Complexity of Algorithm 3

Determining the numeric Kronecker representation to the required Õ(hδ8D8) bits,
needed to check which solutions have t in (0, 1), can be done in Õ(hδ12D12) bit
operations by Proposition 7.5. This is the most expensive step of the algorithm, the
others being simple calculations or computations similar to those discussed in the
last two algorithms.

We have now proven Theorem 7.1, validating our algorithms for ACSV.

Appendix on Solving and Bounding Univariate Polynomials

This appendix contains some classical results about univariate polynomialswhich are
used in our construction of the numeric Kronecker representation. Our presentation
of height bounds and root separation is inspired by Mignotte [27], and also parallels
the appendix of Melczer and Salvy [26]. Our bounds involve the following concepts.

Definition 7.16 (Mahler measure and Euclidean norm) Given a polynomial

P(z) = cD zD + · · · + c0 = cD(z − r1) · · · (z − rD) ∈ C[z]

with roots rj ∈ C and leading coefficient cD , 0, the Mahler measure M(P) and
Euclidean norm ‖P‖2 of P are the quantities

M(P) = |cD |
D∏
j=1

max{1, |rj |}, ‖P‖2 =
©«

D∑
j=1
|cj |2

ª®¬
1/2

.

Note that ‖P‖2 ≤ 2h(P)
√

deg(P) + 1.

Since the set of roots of a product of polynomials is the union of the roots, the
Mahler measure satisfies M(PQ) = M(P)M(Q) for any P,Q ∈ C[z]. The Mahler
measure will be key to the results we derive in this appendix, but it can be difficult
to calculate directly as it relies on the roots of P. We thus begin by bounding the
Mahler measure by the Euclidean norm, which is easy to calculate.

Proposition 7.6 (Landau’s bound) For any P ∈ C[z] the Mahler measure satisfies
M(P) ≤ ‖P‖2, with equality if and only if P is a monomial.

Our proof of Proposition 7.6 uses the following technical lemma, which Problem 7.9
asks you to establish.
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Lemma 7.7 If P(z) ∈ C[z] then ‖(z − r)P(z)‖2 = ‖(rz − 1)P(z)‖2 for any r ∈ C,
where r denotes the complex conjugate of r .
Proof (Proposition 7.6) Rearrange the roots of P so that r1, . . . , r` are the roots with
moduli larger than 1, meaning M(P) = |cDr1 · · · r` |. If

Q(z) = cD
∏̀
k=1
(rj z − 1)

d∏
k=`+1

(z − rj)

then the leading coefficient of Q is cDr1 · · · r` and by Lemma 7.7

‖P‖2 = ‖Q‖2 ≥ |cDr1 · · · r` | = |cDr1 · · · r` | = M(P).

The value ‖Q‖2 equals the leading term of Q only if Q is a monomial. �

7.4.1 Polynomial Height Bounds

First, we use the Mahler measure to prove bounds on the heights of univariate
polynomials.

Lemma 7.8 For polynomials P1, . . . , Pk, P,Q ∈ Z[z],

h(P1 + · · · + Pk) ≤ max
i

h(Pi) + log2 k,

h(P1 · · · Pk) ≤

k∑
i=1

h(Pi) +

k−1∑
i=1

log2(deg Pi + 1),

h(P) ≤ deg P + log2 ‖PQ‖2.

Proof The first two results follow directly from the definition of polynomial height,
so we consider only the last equation. Expanding P(z) = cD(z− r1) · · · (z− rD) gives
Vieta’s formulas for the coefficients of P as symmetric functions in its roots,

ck = cD(−1)k
∑

i1< · · ·<iD−k

ri1 · · · riD−k , (1 ≤ k ≤ D).

Each summand here is at most M(P), so |ck | ≤
(D
k

)
M(P) for all 1 ≤ k ≤ D.

Since M(Q) ≥ 1 for any Q ∈ Z[z], this implies the maximum of the |ck | is at
most 2DM(P) ≤ 2DM(P)M(Q) = 2DM(PQ) ≤ 2D ‖PQ‖2. �

7.4.2 Polynomial Root Bounds

Our next goal is to establish separation bounds for the roots of an integer polynomial.
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Proposition 7.7 Let P ∈ Z[z] be a polynomial of degree D ≥ 2 and height h.
Supposing P(α) = 0,

(i) if α , 0 then 1/(2h + 1) ≤ |α | ≤ 2h + 1;
(ii) if P(β) = 0 and α , β then |α − β | ≥

√
3D−(D+2)/2 ‖P‖1−D2 ;

(iii) if Q(α) , 0 for Q ∈ Z[z] then |Q(α)| ≥ (deg Q + 1)1−D2h(Q)(1−D)‖P‖− degQ
2 ;

(iv) if P is square-free then |P′(α)| ≥ 2−2Dh + 2hD2(1−D)(D + 1)(1−D)/2.

We split the proof of Proposition 7.7 into three parts.

Proof of Proposition 7.7 (i)

Let P(z) = cD zD+ · · ·+c1z+p0 with cD , 0, and let K = max1≤ j≤D−1 |cj |. Suppose
P(α) = 0 and consider the upper bound in Proposition 7.7 (i). We show the stronger
result that |α | ≤ 1 + K/|cD |, following a proof of Cauchy [9, p. 28]. If |α | ≤ 1 then
the result holds trivially. Otherwise, |α | > 1 and

|cDαD | = |cD−1α
D−1+· · ·+c0 | ≤ K(|α |D−1+· · ·+|α |+1) = K

|α |D − 1
|α | − 1

≤ K
|α |D

|α | − 1
,

so |α | ≤ 1 + K/|cD | as desired. The lower bound in Proposition 7.7 (i) comes from
applying the upper bound to the reverse polynomial zDP(1/z), whose height is the
same as P but whose roots are the reciprocals of the roots of P. �

Proof of Proposition 7.7 (ii)

We start by establishing the following bound on the differences of the roots of P.

Lemma 7.9 Let P(z) = cD zD + · · · + c0 = cD(z − r1) · · · (z − rD) ∈ Z[z]. Then for
any distinct 1 ≤ a, b ≤ D,

√
3
∏
i< j

|ri − rj | ≤ |ra − rb |D(D+2)/2
(

M(P)
|cD |

)D−1
.

Proof The constant
∏

i< j(ri − rj) is the determinant of the Vandermonde matrix

V =
©«

1 1 · · · 1
r1 r2 · · · rD
...

... · · ·
...

rD−1
1 rD−1

2 · · · rD−1
D

ª®®®®¬
.

Pick 1 ≤ a < b ≤ D and replace the ath column of this matrix with the ath column
minus the bth. Denote the columns of the resulting matrix by v1, . . . , vD . Note that
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D∏
j=1
‖vj ‖2 =

(
D−1∑
k=1

��rka − rkb
��2) ∏

k,a

(
1 + |rk |2 + · · · + |rk |2(D−1)

)
≤

©«
D−1∑
k=1

�����rka − rk
b

ra − rb

�����2ª®¬ |ra − rb |2
∏
k,a

max
(
D,D|rk |2(D−1)

)
.

If B = max(1, |ra |, |rb |) then

B−2(D−1) ©«
D−1∑
k=1

�����rka − rk
b

ra − rb

�����2ª®¬ =
D−1∑
k=1

������k−1∑
j=0

B−(D−1)r j
ark−j−1

b

������
2

≤

D−1∑
k=1

k2

=
D(D − 1)(2D − 1)

6
≤ D3/3.

Problem 7.8 asks you to prove Hadamard’s inequality, which implies | det V | ≤∏D
j=1 ‖vj ‖2 and thus∏

i< j

|ri − rj | ≤ |ra − rb |2
(
DD+2/3

) ∏
1≤k≤D

max (1, |rk |)2(D−1) .

The stated inequality then follows from taking square-roots. �

Returning to Proposition 7.7 (ii), recall that the discriminant of P is the integer

∆(P) = c2D−2
D

∏
i< j

(ri − rj)2 ∈ Z,

which is zero if and only if P has a repeated root. When P has no repeated roots then
∆(P) is a non-zero integer, so Lemma 7.9 implies

√
3 ≤
√

3|∆(P)| ≤ |ra − rb | D(D+2)/2
(

M(P)
|cD |

)D−1
. (7.12)

If P has no repeated roots this establishes Proposition 7.7 (ii) as M(P) ≤ ‖P‖2.
If P does have repeated roots then the product P̃ of the square-free factors of P
is an integer polynomial whose roots are precisely the distinct roots of P, and
Proposition 7.7 (ii) follows from establishing (7.12) with P replaced by P̃ and using
M(P̃) ≤ M(P) ≤ ‖P‖2. �

Proof of Proposition 7.7 (iii) and (iv)

If Q(α) , 0 and P,Q ∈ Z[z] then there exists an integer polynomial factor P̃ of P
containing α as a root such that P̃ and Q share no roots. Suppose that P̃ and Q have
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leading coefficients a and b, respectively. Since the resultant of P̃ andQ is a non-zero
integer,

1 ≤ | Res(P̃,Q)| = |a|degQ |b|deg P̃
∏

P̃(γ)=0
Q(β)=0

|γ − β | = |a|degQ
∏

P̃(γ)=0

|Q(γ)| . (7.13)

For any γ ∈ C,
|Q(γ)| ≤ (deg Q + 1)2h(Q)max(1, |γ |)degQ,

so, using deg P̃ ≤ D and M(P̃) ≤ M(P) ≤ ‖P‖2, we obtain

|a|degQ
∏

P̃(γ)=0
γ,α

|Q(γ)| ≤ (deg Q + 1)deg P̃−12h(Q)(deg P̃−1)
(

M(P̃)
max(1, |α |)

)degQ

≤ (deg Q + 1)D−12h(Q)(D−1)‖P‖degQ
2 .

Combining this bound with (7.13) gives Proposition 7.7 (iii). Proposition 7.7 (iv) is
a special instance of Proposition 7.7 (iii) with Q = P′(z). �

7.4.3 Resultant and GCD Bounds

We also require bounds on the resultant and greatest common divisor of two uni-
variate polynomials. Lemma 7.8 directly bounds the greatest common divisor of two
polynomials, and an efficient algorithm achieving the following complexity can be
found in von zur Gathen and Gerhard [40, Cor. 11.14].

Lemma 7.10 For P,Q ∈ Z[U] of degrees at most D and heights at most h, gcd(P,Q)
has height Õ(D + h) and can be computed in Õ(D2 + hD) bit operations.

The resultant of two polynomials is defined by the determinant of the matrix in
Problem 2.14 of Chapter 2. Computing this determinant using a cofactor expansion
and applying Lemma 7.8 to the resulting expression gives the following bounds on
the resultant.

Lemma 7.11 For P,Q ∈ Z[T,U] let R = ResT (P,Q) and

δ = degT P degU Q + degT Q degU P

η = h(P) degT Q + h(Q) degT P + log2((degT P + degT Q)!)
+ log2(degU P + 1) degT Q + log2(degU Q + 1) degT P.

Then deg R ≤ δ and h(R) ≤ η. Furthermore, if all coefficients of P and Q as
polynomials in T are monomials in U then h(R) ≤ h(P) degT Q + h(Q) degT P +
log2((degT P + degT Q)!).
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7.4.4 Algorithms for Polynomial Solving and Evaluation

The Kronecker representation encodes the solutions of a multivariate polynomial
system using the roots of a square-free univariate polynomial. This is useful, because
numerical solvers for univariate polynomials have been studied for hundreds of years,
and are implemented in every major computer algebra system. For our complexity
analysis we use the following lemma, containing the main results of Sagraloff and
Mehlhorn [37] (for real roots) and Mehlhorn et al. [25] (for complex roots).

Lemma 7.12 Let A ∈ Z[T] be a square-free polynomial of degree D and height h.
Then there exists an algorithm PolyRoots which takes A and a positive integer κ
and returns isolating intervals for all real roots of A(T) and isolating disks for all
complex roots of A(T), each of size less than 2−κ , in Õ(D3+D2h+Dκ) bit operations.

In order to determine the solutions specified by a Kronecker representation [P,Q]we
need to evaluate the polynomials Q j at (approximate) roots of P(u). The following
result is contained in Kobel and Sagraloff [22].

Lemma 7.13 Let A ∈ Z[T] be a square-free polynomial of degree D and height h.
Then there exists an algorithm PolyEval which takes A, a positive integer κ,
and a sequence t1, . . . , tm ∈ C of length m = O(D), and returns approxi-
mations a1, . . . , am ∈ C such that |A(tj) − aj | < 2−κ for all 1 ≤ j ≤ m
using Õ(D(h + κ + D log maxj |tj |)) bit operations. The algorithm needs only
Õ(h + κ + D log maxj |tj |) bits of t1, . . . , tm to return the approximations a1, . . . , am,
and if the tj are real then the approximations aj are also real.

Problems

7.1 For any δ ∈ N>0, prove that the determinant of the Jacobian of the polynomial
system (7.2) is non-zero at the solutions of (7.2) when H(z) = 1− zδ1 −· · ·− zδ

d
. Using

Corollary 5.7 from Chapter 5, conclude that assumption (J1) in the combinatorial
case holds generically.

7.2 Algorithms 2 and 3 allow one to prove minimality of critical points with respect
to the power series expansion of F(z) using Proposition 5.4. Modify these algorithms
to prove minimality with respect to any convergent Laurent expansion of F(z), where
the expansion under consideration is specified by a point in its domain of convergence
with rational coordinates.

7.3 Prove the Schwartz-Zippel lemma: if P(z) ∈ K[z1, . . . , zd] is a polynomial of
degree δ over a field K and S is a finite subset of K, then the probability that P
vanishes when each zj is picked uniformly at random from S satisfies

P
[
P(z) = 0 : z ∈ Sd

]
≤

δ

|S |
.
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Hint: When d = 1 the polynomial P has at most δ zeroes. Working inductively, write
a polynomial P ∈ K[z] as a polynomial in the variable zd whose coefficients are
polynomials in K[z1, . . . , zd−1].

7.4 Recall that the second Apéry number sequence, related to the irrationality
of ζ(2), is the main power series diagonal of the rational function 1/H(x, y, z) where
H(x, y, z) = 1 − (1 + z)(x + y + xy). Using a Gröbner basis calculation, determine a
Kronecker representation of the extended critical point system

S = {H, xHx − λ, yHy − λ, zHz − λ,H(t x, ty, tz)}.

Use this to find the minimal critical points and give asymptotics of the diagonal.

7.5 The main power series diagonal of

F(x, y, t) =
(1 + x)(1 + y)

1 − t xy(x/y + y/x + xy + 1/(xy) + y + 1/y)

enumerates the number of walks on the six steps {(±1,±1), (0,±1)} which begin at
the origin and stay in the non-negative quadrant. Using a Gröbner basis calculation,
determine a Kronecker representation of the extended critical point system and use
this to determine the minimal critical points of F. Do not forget to find all minimal
critical points with the same coordinate-wise modulus!

7.6 Modify our algorithms to find the smooth minimal critical points of the rational
function

F(z) = z1 · · · zd

(1 − z1) · · · (1 − zd)
(
1 −

∑d
i=2(i − 1)ei(z)

)
for small values of d ∈ N, where ei(z) is the ith elementary symmetric function

ei(z) =
∑

1≤ j1< · · ·< ji ≤d
zj1 · · · zji .

Write a program which takes d and returns asymptotics of the diagonal. Note that
the denominator of F is not smooth, but all smooth minimal critical points will be
zeroes of the denominator’s last factor. Try to push your algorithm to the highest
value of d possible. Recall that this sequence enumerates singular cubic tensors [32].

7.7 If M = (mi, j) is a D×D positive-definite matrix, prove the inequality | det(M)| ≤∏D
k=1 |mk,k |.Hint: Reduce to the casewhere the diagonal elements havemodulus one,

then use the arithmetic-geometric mean inequality on the product of M’s eigenvalues.

7.8 Use Problem 7.7 to prove Hadamard’s inequality: if M is a D × D matrix with
columns v1, . . . , vD then | det(M)| ≤

∏D
k=1 ‖vk ‖2. Hint: Make use of the matrix

N = M M∗, where M∗ is the conjugate transpose of M .

7.9 Prove Lemma 7.7 by expanding ‖(z − r)P(z)‖22 in terms of the coefficients of P.



References 303

References

1. Yuliy Baryshnikov, Stephen Melczer, Robin Pemantle, and Armin Straub. Diagonal asymp-
totics for symmetric rational functions via ACSV. In 29th International Conference on Prob-
abilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, volume 110
of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 12, 15. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2018.

2. Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic ge-
ometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin,
2003.

3. David Bayer and Michael Stillman. A theorem on refining division orders by the reverse
lexicographic order. Duke Math. J., 55(2):321–328, 1987.

4. Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1993. A computational approach to commutative
algebra, In cooperation with Heinz Kredel.

5. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

6. B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Glei-
chungssystems. Aequ. Math., 4(3):374–383, 1970. English translation in: B. Buchberger, F.
Winkler: Groebner Bases and Applications, Proc. of the International Conference "33 Years
of Groebner Bases", 1998, RISC, Austria, London Math. Society Lecture Note Series 251,
Cambridge Univ. Press, 1998, pp. 535–545.

7. Yann Bugeaud, Andrej Dujella, Wenjie Fang, Tomislav Pejković, and Bruno Salvy. Absolute
root separation. Experimental Mathematics, 0(0):1–8, 2019.

8. Yann Bugeaud, Andrej Dujella, Tomislav Pejković, and Bruno Salvy. Absolute real root
separation. Amer. Math. Monthly, 124(10):930–936, 2017.

9. Augustin Louis Cauchy. Mémoire sur la résolution des équations numériques et sur la théorie
de l’élimination. Chez de Bure Frères, A Paris, 1829.

10. David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate
Texts in Mathematics. Springer, New York, third edition, 2007.

11. David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

12. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329–344, 1993.

13. Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra, 139(1-3):61–88, 1999. Effective methods in algebraic geometry (Saint-Malo,
1998).

14. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without re-
duction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and
Algebraic Computation, pages 75–83. ACM, New York, 2002.

15. Patrizia Gianni and Teo Mora. Algebraic solution of systems of polynomial equations us-
ing Groebner bases. In Applied algebra, algebraic algorithms and error-correcting codes
(Menorca, 1987), volume 356 of Lecture Notes in Comput. Sci., pages 247–257. Springer,
Berlin, 1989.

16. Marc Giusti, Grégoire Lecerf, and Bruno Salvy. A Gröbner free alternative for polynomial
system solving. J. Complexity, 17(1):154–211, 2001.

17. R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of combinatorics. Vol. 1, 2.
Elsevier Science B.V., Amsterdam; MIT Press, Cambridge, MA, 1995.

18. D. Yu. Grigor’ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequalities in
subexponential time. J. Symbolic Comput., 5(1-2):37–64, 1988.

19. Lars Hörmander. An introduction to complex analysis in several variables, volume 7 of North-
Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition,
1990.



304 7 Automated Analytic Combinatorics
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Non-Smooth ACSV





Chapter 8
Beyond Smooth Points: Poles on a Hyperplane
Arrangement

Algebra is a general Method of Computation by certain signs
and symbols which have been contrived for the Purpose, and
found convenient.
— Colin Maclaurin

Put thyself into the trick of singularity.
— William Shakespeare (as Malvolio)

Let F(z) be a meromorphic function with singular set V. In Chapter 5 we saw
how the behaviour of F near a finite number of singularities can dictate coefficient
asymptoticswhenV is locally smooth near the points of interest. This chapter begins
our descent into the general theory of analytic combinatorics in several variables by
relaxing the condition thatV is smooth. Here, we study rational functions

F(z) = G(z)∏m
j=1 `j(z)p j

where each `j is a real linear function. The singular set V of such a function is a
union of hyperplanes. If σ ∈ V lies on exactly one of these hyperplanes then V is
smooth in a neighbourhood of σ, but V is not locally smooth near singularities in
the intersection of multiple hyperplanes. Generalizing the smooth case of Chapter 5,
we will show that if σ lies on the intersection of k linearly independent hyperplanes
then the asymptotic contribution of σ is determined by taking k univariate residues
followed by asymptotically approximating a (d − k)-dimensional saddle-point inte-
gral. Because the singular set of F is so easily characterized, we will be able to carry
out the required computations explicitly using linear algebra and standard integral
approximations of the form seen in previous chapters.

We will prove that the asymptotic behaviour of a coefficient sequence [znr]F(z)
varies smoothly with the direction r as it stays in different cones of Rd . Directions
interior to these cones, defined precisely below, are known as generic directions.
Theorem 8.2 below shows how to determine asymptotics in generic directions using
information directly computable from F(z). Algorithm 4 gives a high-level imple-
mentation of this result which, when combined with the computational techniques
discussed in Chapter 7, automatically determines asymptotics in generic directions.
We discuss asymptotics along non-generic directions in Section 8.3.

Example 8.1 (An Illustration of the Theory)

Consider the power series expansion of the rational function

307
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b

0 a

(
2a+b

)n

2
(
2a+b

)n

(a+b)a+b
aabb

n n−1/2 (a+b)3/2√
2abπ(b−a)

Fig. 8.1 The three asymptotic regimes for the coefficients [xanybn]F(x, y) of the rational function
F(x, y) = 1/(1 − 2x)(1 − x − y).

F(x, y) =
1

(1 − 2x)(1 − x − y)
,

whose set of singularities V consists of the union of two hyperplanes. Then V
is locally a hyperplane at all of its points except for (1/2, 1/2), where the two
hyperplanes meet, and the theory below implies r = (a, b) is a non-generic direction
if and only if a = b. When a , b then Theorem 8.2 determines the asymptotic
growth of [xanybn]F(x, y), while in non-generic directions asymptotics are given by
Theorem 8.3. Asymptotics for this example are displayed in Figure 8.1.

Early studies of multivariate generating functions with linear denominators were
undertaken in queuing theory work of Bertozzi and McKenna [2] and Kogan and
Yakovlev [4]; see also Kogan [3].

Example 8.2 (Closed Multiclass Queuing Networks)

Bertozzi andMcKenna [2] use multivariate generating functions and residue compu-
tations similar to those below to investigate so-called partition functions for queuing
networks. For instance, the generating function of a ‘closed multiclass queuing net-
work with no infinite servers’ has the form

F(z) = 1(
1 −

∑d
j=1 ρj,1zj

) (
1 −

∑d
j=1 ρj,2zj

)
· · ·

(
1 −

∑d
j=1 ρj,mzj

)
for real constants ρj,k > 0 depending on model parameters [2, Eq. (4.18)]. The-
orem 8.2 below determines the asymptotics of interest in any generic direction.
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Problem 8.6 asks you to determine asymptotics for the two-dimensional case

F(x, y) =
1

(1 − ρ1,1x − ρ2,1y)(1 − ρ1,2x − ρ2,2y)
,

paying attention to how the values of the weights ρi, j change asymptotic behaviour.

Our asymptotic argument proceeds in five steps:

1. decompose the Cauchy integral expression for series coefficients as a sum of
integrals whose domains of integration are imaginary fibers (defined below);

2. identify a finite set of contributing singularities where local behaviour of F
determines asymptotics;

3. deform the imaginary fibers to be sufficiently close to contributing singularities;
4. use residue calculations to obtain saddle-point integrals;
5. asymptotically approximate the saddle-point integrals.

Because our singular sets are defined by real linear functions, we are able to carry
out the necessary calculations using linear algebra and the techniques of Chapter 5
for functions with smooth contributing singularities. In Chapter 9 we extend our
results to rational functions whose singular sets locally behave like the union of
hyperplanes, before summarizing the theory for general rational functions.

We begin our analysis in this chapter with some preliminary setup. The presenta-
tion of this chapter is based on Baryshnikov et al. [1].

8.1 Setup and Definitions

Fix a rational function F(z) = G(z)/H(z) defined by coprime polynomials G(z) and

H(z) =
m∏
j=1

`j(z)p j ,

where each pj is a positive integer and each

`j(z) = 1 − b(j) · z = 1 − b(j)1 z1 − · · · − b(j)
d

zd

is a real linear function. We seek asymptotics of a convergent Laurent expansion

F(z) =
∑
i∈Zd

fizi

of F(z) in some domainD ⊂ Cd . In order to be as explicit as possible in this chapter,
we consider only power series expansions and real linear functions. Arbitrary Laurent
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expansions and complex linear functions are covered by the general theory developed
in Chapter 9; Problem 8.3 also discusses some aspects of the general case.

Unless otherwise specified, in this chapter we take the power series expansion
of F and thus consider only directions r with positive coordinates.

Because G and H are coprime, Proposition 3.2 from Chapter 3 implies that the
singular set of F is the union of hyperplanes

V = {z : H(z) = 0}.

To discuss the local geometry ofV we make the following definitions.

Definition 8.1 (flats, strata, and arrangements) For any S = {k1, . . . , ks} ⊂
{1, . . . ,m}, the flat defined by the linear functions `k1, . . . , `ks is the set

VS = Vk1,...,ks = {z ∈ Cd : `k1 (z) = · · · = `ks (z) = 0}

of their common solutions, with corresponding real flat

V ′S = VS ∩ R
d = {z ∈ Rd : `k1 (z) = · · · = `ks (z) = 0}.

The stratum defined by S is the flatVS minus any other flats it strictly contains,

SS = VS \
⋃
VT (VS

VT .

The dimension ofVS is its dimension as a linear space, and the dimension of SS is
defined to be the dimension of VS . A hyperplane arrangement A defined by V is
the collection of maximal subsets of {1, . . . ,m} corresponding to distinct non-empty
flats. The collection of strata formed by the elements of a hyperplane arrangement
ofV form a stratification ofV.

Remark 8.1 Our definition of a hyperplane arrangement is necessary as different
index sets can give rise to the same flat. For instance, when three pairs of lines
intersect at a common point p then the flat defined by any two of them is {p}.
The study of hyperplane arrangements is a well established field in combinatorics,
detailed, for instance, in Orlik and Terao [5].

Remark 8.2 (a perspective from differential geometry) Each stratum SS forms a
complex manifold, and the dimension of SS according to Definition 8.1 equals the
dimension of SS as a manifold. A stratification of V partitions V, which is not
locally a manifold near any point lying in at least two distinct flats, into complex
manifolds. Because flats are algebraic objects (defined by linear equalities) they are
easy to define and manipulate, but our eventual integral expressions will require the
strata, which are semi-algebraic (defined by linear equalities and in-equalities). For
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our analytic arguments to work properly we also need the strata ofV to ‘fit together
nicely’. In this chapter we simply require independence between the linear factors
at any common solution. In Section 9.3 of Chapter 9 we discuss the more general
concept of a Whitney stratification for an algebraic set.

Definition 8.2 (simple functions)The function F(z) is called simple if any collection
of coefficient vectors b(k1), . . . , b(ks ) is linearly independent whenever `k1 (z) = · · · =
lks (z) = 0 has a solution (i.e. if any subset of hyperplanes comprising V that share
a common point have linearly independent normals).

When F is simple then V defines only one hyperplane arrangement, consisting of
subsets S ⊂ {1, . . . ,m} such that VS is non-empty, and the dimension of any stra-
tum SS equals d− |S |. We will see that if F is not simple then we can algorithmically
decompose F as the sum of simple functions.

As in previous chapters, our analysis begins with a multivariate Cauchy integral

[znr]F(z) = 1
(2πi)d

∫
T

F(z) dz
znr+1 , (8.1)

where T is a product of circles in the domain of convergence D. Again the growth
of the Cauchy integrand is captured by the height function

hr(z) = h(z) = −
d∑
j=1

rj log |zj |.

In Chapter 5, when we considered only smooth points, we searched for the smooth
critical points of V by checking when the gradient (∇H)(z) was a multiple
of (∇hr)(z). The smooth critical points gave potential minimizers of the height
function onD, and thus helped determine the singularities of interest for an asymp-
totic analysis. Now that we consider non-smooth singularities we must refine our
notion of critical points: if z is a root of at least two of the `j then (∇H)(z) = 0,
so any non-smooth point trivially satisfies the smooth critical point equations (5.16)
derived in Chapter 5. We thus define critical points relative to each stratum, as each
stratum defines a smooth set.

Definition 8.3 (critical points) For any S = {k1, . . . , ks} ⊂ {1, . . . ,m} such
that b(k1), . . . , b(ks ) are linear independent, the critical points of the flat VS in the
direction r are the points z ∈ Rd∗ with non-zero real coordinates where the matrix

N =
©«
−∇`k1
...

−∇`ks
−∇h

ª®®®®¬
=

©«
b(k1)

...

b(ks )
r1/z1 · · · rd/zd

ª®®®®¬
is rank deficient. If s = d then every point in VS is critical (linear independence
of the b(j) implies s cannot be greater than d). Otherwise, the critical points of VS
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are the solutions of the system defined by the `j together with the determinants of
all (s + 1) × (s + 1) matrix minors of N . We call a critical point on the flat VS a
critical point of the stratum SS when it also lies in SS (in general it may only be a
limit point of the stratum). The set of critical points of F, denoted Ω, consists of all
critical points on any flat defined by linearly independent collections of the `j . Each
σ ∈ Ω lies in a unique stratum, which we call the stratum of σ and denote S(σ).

Remark 8.3 Up to a reordering of variables and the `k , we may assume that N
contains pivots in its first s diagonal entries. For j = 1, . . . , d − s, let Nj denote
the (s + 1) × (s + 1) matrix constructed from the first s columns of N together with
its (s + j)th column. By definition, at any critical point the determinants of the Nj

matrices vanish. Conversely, if all determinants of the Nj vanish then each of the
last d − s columns of N lie in the dimension s linear space spanned by the first s
columns. Thus, the critical points on VS are the real solutions of the critical point
equations forVS ,

`k1 = · · · = `ks = det N1 = det Nd−s = 0. (8.2)

If d = s then (8.2) simply states `k1 = · · · = `ks = 0.

Remark 8.4 When S = {k} contains a single element then (8.2) becomes the smooth
critical point equations (5.16) from Chapter 5 with Hs = `k .

Our definition of critical points will be a posteriori validated by showing that, after
suitable residue computations, the Cauchy integral for series coefficients becomes a
finite sum of integrals near critical points which can be asymptotically approximated.

A critical point defined by a flat may not lie on the stratum defined by the flat,
a pathological case which restricts some of the necessary computations. Luckily, as
the following definition suggests, we will see that this typically does not occur.

Definition 8.4 (generic directions) The direction r is generic if for each flatVS any
critical point σ ofVS lies on the stratum SS (i.e., does not lie in a subflat ofVS).

With this setup out of the way, we are now able to work through our main
arguments. We split the analysis into two cases, first dealing with asymptotics in
generic directions and then discussing non-generic directions. The general theory is
developed alongside a detailed running example.

8.2 Asymptotics in Generic Directions

Returning to the Cauchy integral, and recalling that we consider the power series
expansion of F(z), the coefficients of interest are given by

fnr = [znr]F(z) = 1
(2πi)d

∫
T

G(z)∏m
j=1 `j(z)p j

dz
znr+1 (8.3)
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Fig. 8.2 The real part of the hyperplane arrangement l1(x, y)l2(x, y) = 0 in our running example,
with the bounded components B0, B1, and B2 ofMR marked.

whenever nr = (nr1, . . . , nrd) is a positive integer vector and T is a product of
circles sufficiently close to the origin. For most of this section our results include as
a hypothesis that F is simple. In sub-Section 8.2.6 below we discuss how non-simple
functions can be decomposed into a finite sum of simple functions, to which our
main results can then be applied.

To simplify notation we write the Cauchy integrand in (8.3) as

ω =
G(z)

znr+1 ∏m
j=1 `j(z)p j

,

and let W = V(z1 · · · zd H) denote the singular set of ω, equal to V with the
coordinate hyperplanes added. The domain of analyticity ofω isM = Cd\W, so that
the domain of integration T in (8.3) can deformed without changing the value of the
Cauchy integral as long as the deformations stay inM. Because H(z) is the product
of real linear functions, the real partMR = M ∩ Rd gives a good approximation
toM for asymptotic purposes, and is more easily visualized. Similarly, we let VR
denote the real elements ofV. The hyperplanes comprisingVR splitMR into convex
polyhedra, and we let B denote the collection of all connected components ofMR.

Our running example in this section is the following.

Example 8.3 (Running Example in the Generic Case)

Let F(x, y) = 1
`1(x,y)`2(x,y)

, where

`1 = 1 −
2x + y

3
and `2 = 1 −

3x + y

4
.

Then given a direction r = (r1, r2), the coefficient

[xr1nyr2n]F(x, y) =
1
(2πi)2

∫
T

1(
1 − 2x+y

3

) (
1 − 3x+y

4

) dxdy
xr1n+1yr2n+1 (8.4)
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where
T = {(ε1eiθ1, ε2eiθ2 : −π < θ1, θ2 ≤ π}

is any product of circles with sufficiently small radii ε1, ε2 > 0. In particular, no
zero (a, b) of H(x, y) = `1(x, y)`2(x, y) can satisfy |a| ≤ ε1 and |b| ≤ ε2, so in this
example it is necessary and sufficient that

2ε1 + ε2

3
< 1 and

3ε1 + ε2

4
< 1.

Below we take ε1 = ε2 = ε for ε < 1. The bounded components ofMR form the
set B = {B0, B1, B2} whose elements are displayed in Figure 8.2.

8.2.1 Step 1: Express the Cauchy Integral as Sum of Imaginary Fibers

We first convert the Cauchy integral into a sum of integrals over particularly conve-
nient domains of integration.

Definition 8.5 (imaginary fiber) An imaginary fiber is any set of the form

Cx = x + iRd = {x + iy : y ∈ Rd} ⊂ Cd,

with basepoint x ∈ Rd .

As the linear functions `j have real coefficients, if `j(x) , 0 for x ∈ Rd then

`j(x + iy) = `j(x) + i`j(y) , 0

for any x + iy ∈ Cx. The real domain of analyticity MR of ω consists of convex
connected components, and given two imaginary fibers with basepoints x and y in
the same component of MR there is a continuous deformation between the fibers
which stays inM, defined by

g(t) = tx + (1 − t)y + iRd

for 0 ≤ t ≤ 1. This makes imaginary fibers useful for our purposes, as they can
be easily deformed without crossing M. Because the Cauchy integrand decays
exponentially in n at points sufficiently far from the origin, if x and y lie in the same
component ofMR then

∫
Cx
ω =

∫
Cy
ω. The Cauchy integral can be written as a sum

of integrals over imaginary fibers by ‘stretching’ circles along the imaginary axis.

Example 8.3 Continued (Deforming to Imaginary Fibers))

Because `1(x, y) and `2(x, y) have real coefficients, the circles |x | = ε and |y | = ε
which make up T can be deformed along their imaginary axes without crossingM,
and thus without changing the value of the Cauchy integral in (8.4). As shown in
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Fig. 8.3 Moving only in the imaginary axis, one can deform a circle around the origin into a
rectangle of arbitrarily large height. Because the horizontal lines can be moved arbitrarily far from
the x-axis, deforming the domain of integration from a product of circles to the sum of oriented
imaginary fibers introduces no error when n is sufficiently large.

Figure 8.3, each of these circles can be deformed into rectangles of fixed width and
arbitrarily large height. Because the Cauchy integrand decays exponentially as the
moduli of x and y increase, we can replace each of the circles comprising T by two
oriented imaginary fibers.

Ultimately, the product of circles T becomes four imaginary fibers, so that

[xnr1 ynr2 ]F(x, y) =
1
(2πi)2

[∫
Cε,ε

ω −

∫
C−ε,ε

ω −

∫
Cε,−ε

ω +

∫
C−ε,−ε

ω

]
, (8.5)

where the sign in front of each integral keeps track of orientation as R2 keeps its
standard orientation in each imaginary fiber.

The general case follows in the same manner. To keep track of the necessary signs
we make the following definitions.

Definition 8.6 (signs of points) The sign function on R is defined by

sgn(z) =


−1 : z < 0
0 : z = 0
1 : z > 1

.

Given z ∈ Rd , the sign of z is sgn(z) = sgn(z1 · · · zd).

Proposition 8.1 Consider the power series expansion of F(z) and let r ∈ Rd
>0.

Whenever n is sufficiently large and nr has integer coordinates,

[znr]F(z) =
∑

τ∈{±1}d

sgn(τ)
(2πi)d

∫
ετ+iRd

ω. (8.6)



316 8 Beyond Smooth Points: Poles on a Hyperplane Arrangement

Proof Because the Cauchy domain of integration T in (8.1) is a product of d circles,
one in each variable, the general argument follows from the one-dimensional case.
For any K > 0, let

CK = {z : <(z) ∈ [−ε, ε] and =(z) = ±K}

and
DK = {z : <(z) = ±ε and =(z) ∈ [−K,K]}

denote the horizontal and vertical sides of the rectangle in Figure 8.3, respectively,
oriented according to the arrows in the figure. As we can deform the circle |z | = ε
into CK ∪ DK while staying inM, we have∫

|z |=ε
F(z)

dz
znr+1 =

∫
CK

F(z)
dz

znr+1 +

∫
DK

F(z)
dz

znr+1 ,

and the stated result holds if the integral over CK goes to zero as K → ∞. In fact,
each point in CK has modulus at least K , so����∫

CK

F(z)
dz

znr+1

���� ≤ κ maxz∈CK |F(z)|
Knr

(8.7)

for a constant κ > 0. Since F is a rational function and CK is bounded away from the
singular set of F for all K > 0, when n is sufficiently large the denominator of the
upper bound in (8.7) grows faster than its numerator. Thus, the upper bound in (8.7)
goes to zero as K →∞. �

8.2.2 Step 2: Determine the Contributing Singularities

The main benefit to working with integrals over imaginary fibers is that one can
make deformations in the real space MR instead of the complex space M. On
the imaginary fiber Cx with real basepoint x ∈ MR the modulus of the Cauchy
integrand ω satisfies

|ω | = O (|x1 |
−r1n · · · |xd |−rdn) = O

(
ehr(x)

)
as n→∞, since |xj + iyj | ≥ |xj | for all yj ∈ R. Because

∫
Cx
ω depends only on the

component B ⊂ MR in which x lies, each point in B gives an upper bound on the
exponential growth of

∫
Cx
ω.

Remark 8.5 When each coordinate of r is positive and x lies in an unbounded com-
ponent ofMR then taking x→∞ proves that

∫
Cx
ω = 0 for all sufficiently large n.

Theminimizers of this upper bound on |ω | on each flat are given by critical points.
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Lemma 8.1 Fix a real flat L defined by the vanishing of linearly independent
`k1, . . . , `ks , and suppose r has positive coordinates. Then σ ∈ Rd is a critical
point of F, in the sense of Definition 8.3, if and only if σ is a local minimizer of h
on L. Consequently, each real flat of V admits exactly one critical point in every
orthant of Rd where it is bounded, and no critical points in any other orthant.

Proof The Hessian of h(z) is a diagonal matrix with entries rj/z2
j , so h is continuous

and strictly convex on the intersection of L with any orthant. Thus, the gradient of h
restricted to L is zero at w ∈ L if and only if w is a minimizer of h on L, and there
can be at most one such point in each orthant.

As we assume the coefficient vectors b(k j ) are linearly independent, up to a
reordering of variables and the `k j we may also assume that the matrix M with
rows b(k1), . . . , b(ks ), e(s+1), . . . , e(d) has full rank, where e(j) is the jth elementary
basis vector with a 1 in position j and all other entries 0. If z′ = (zs+1, . . . , zd) then L
is parametrized as

L =
{

M−1
(
1
z′

)
: z′ ∈ Rd−s

}
.

To lighten notation we write this parametrization z = g(z′), so that the derivative of
zj = gj(z′) with respect to za equals M−1

j,a for all s + 1 ≤ a ≤ d. Then the height
function restricted to L has the parametrization

h(z′) = −
d∑
j=1

rj log(gj(z′)), (8.8)

and setting its gradient equal to zero gives the system

0 = −
d∑
j=1

rj
zj

M−1
j,a (s + 1 ≤ a ≤ d). (8.9)

If v = −(r1/z1, . . . , rd/zd) then (8.9) implies the existence of λ ∈ Rd−s such that
vM−1 = (λ, 0), and therefore v = M(λ, 0). The gradient of h(z′) thus vanishes if and
only if v can be written as a linear combination of b(k1), . . . , b(ks ), which happens
if and only if z = g(z′) is a critical point in the sense of Definition 8.3. There can
be no minimizer of the height function in any orthant of Rd where L is unbounded,
and there must be a minimizer in every orthant where it is bounded as the height
function approaches infinity as z approaches any coordinate axis. �

Example 8.3 Continued (Finding Critical Points))

Each of the four real basepoints (±ε,±ε) of the imaginary fibers C±ε,±ε lie in
distinct components ofMR. Because (ε,−ε), (−ε, ε) and (−ε,−ε) are in unbounded
components ofMR (see Figure 8.4 below) the integrals of ω over these domains are
zero, and
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[xr1nyr2n]F(x, y) =
1
(2πi)2

∫
(ε,ε)+iR2

ω. (8.10)

The singular setV can be decomposed into the flats

V1 = V

(
1 −

2x + y

3

)
, V2 = V

(
1 −

3x + y

4

)
, V1,2 = V(l1, `2) = {(1, 1)},

comprising two lines and a point, corresponding to strata

S1 = V1 \ V1,2, S2 = V2 \ V1,2, S1,2 = V1,2.

The critical points onV1 are those where the matrix

N =
(
−∇`1
−∇h

)
=

(
2/3 1/3

r1/x r2/y

)
is rank deficient. Solving `1 = det N = 0 gives the critical point

σ1 =

(
3r̂1

2
, 3r̂2

)
,

where r̂ = r/(r1 + r2) is the vector with unit coordinate sum in the direction defined
by r. Similarly,V2 admits only the critical point

σ2 =

(
4r̂1

3
, 4r̂2

)
.

The flat V1,2 consists of the single point σ12 = (1, 1), which is trivially a critical
point. The direction r is non-generic precisely when one of σ1 or σ2 equals (1, 1),
which happens if and only if r is a multiple of (2, 1) or (3, 1).

Remark 8.6 If σ is a critical point on the flat defined by linearly independent
`k1, . . . , `ks then there exist unique real numbers a1, . . . , as such that

− (∇h)(σ) =
s∑
j=1

aj(−∇`k j ) =

s∑
j=1

ajb(k j ). (8.11)

Existence of a critical point σ such that some coefficient aj in (8.11) is zero is
equivalent to the direction r being non-generic.

Lemma 8.1 characterizes the minimizers of the height function on each flat, but
we really want theminimizers of the height function on the closure of each (bounded)
component ofMR. In fact, pairing each bounded component ofMR with the critical
point that minimizes the height function on its closure gives a bijection.

Proposition 8.2 Suppose r is a generic direction with positive coordinates and F is
simple. For bounded component B ∈ B let σB be the point minimizing h on B. Then
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the map B 7→ σB gives a bijection between the set of critical points Ω and the set of
bounded components in B.

Proof The minimum σB of the strictly convex function h on any bounded B ∈ B
occurs on some flat defining part of the boundary of B, so Lemma 8.1 implies σB

is always a critical point. Now, suppose σ is the critical point on a flat Vk1,...,ks in
some fixed orthant, and write

−(∇h)(σ) =
s∑
j=1

ajb(k j ),

where each aj ∈ R is non-zero since r is generic. Because the b(k j ) are linearly
independent, there exists a unique component B ⊂ MR with σ ∈ B such that B has
non-empty intersection with the set

A = {z : aj`j(z) > 0 for all j}.

In fact the polyhedron B is contained in A, so for any z ∈ B

(∇h)(σ) · (z − σ) =
s∑
j=1

aj

(
1 − z · b(k j )

)
=

s∑
j=1

aj`k j (z) ≥ 0.

In particular, h increases as it moves from σ towards any arbitrarily close z ∈ B,
so σ is a local (and thus global) minimizer of the strictly convex function h on B.
The fact that h has a minimum on B also implies B is bounded.

If C , B is another component of MR with σ ∈ C then there exists some
1 ≤ j ≤ s such that aj`k j (z) < 0 for z ∈ C. Let z ∈ C be any vector such that
`ki (z) = 0 for i , j and `k j (z) < 0. Then

(∇h)(σ) · (z − σ) = aj(1 − b(k j ) · z) < 0,

so, for sufficiently small ε > 0, the vector v = σ + ε(z − σ) lies in C and satisfies
h(v) < h(σ). In other words, σ is not a minimizer of h on C.

Thus, we have shown that each minimizer of h on the closure of a bounded
component ofMR is a critical point, and that each critical point is the minimizer on
the closure of a unique bounded component. �

Definition 8.7 The height of a bounded component B ∈ B is the height of the critical
point σB, which is the minimum of h on B. Given critical point σ ∈ Ω, we write
B(σ) for the bounded component in B on which the minimum of h occurs at σ.

Since Proposition 8.1 expresses the series coefficients of interest as a sum of inte-
grals over imaginary fibers near the origin, the critical points which are minimizers
for bounded components ‘closer’ to the origin play a special role.

Definition 8.8 (contributing singularities)Givenσ on the real flatVk1,...,ks defined
by `k1, . . . , `ks , we define the real cone
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Fig. 8.4 Positions of the contributing points (dots) in direction r = (r1, r2) when r̂1 < 2/3 (left),
2/3 < r̂1 < 3/4 (centre), and 3/4 < r̂1 (right). If B0 is the bounded component ofMR containing
the origin then we move the imaginary fiber with basepoint near the origin in B0 to an imaginary
fiber whose basepoint is close to the contributing singularity on ∂B0. The other imaginary fibers
can be pushed off to infinity without crossing V or the coordinate axes.

N(σ) =


s∑
j=1

ajb(k j ) : aj > 0
 ⊂ Rd .

The point σ ∈ Rd∗ is called a contributing singularity, or contributing point,
when −(∇h)(σ) ∈ N(σ).

Remark 8.7 Recall the logarithmic gradient∇log f = (z1 fz1, . . . , zd fzd ) fromprevious
chapters. Then −(∇h)(σ) ∈ N(σ) is equivalent to r being in the positive real span
of the logarithmic gradients ∇log`k j .

Since `j(0) > 0 for each 1 ≤ j ≤ m, our proof of Proposition 8.2 immediately
gives the following.

Corollary 8.1 Let σ ∈ Rd∗ lie on the real flat defined by linearly independent func-
tions `k1, . . . , `ks , and suppose σ is contained in an orthant O of Rd . If r is a
nongeneric direction with positive coordinates then σ is a contributing singularity
if and only if σ is the unique minimizer of h(z) on the bounded polyhedron{

z ∈ Rd : `k j (z) ≥ 0 for j = 1, . . . , s
}
∩ O

defined by the `k j (z) and the coordinate axes.

Remark 8.8 If σ is a minimal point (on the boundary of the domain of conver-
gence D) lying in a unique hyperplane in V then Definition 8.8 matches Defini-
tion 5.5 of Chapter 5 for a minimal smooth contributing point.

Example 8.3 Continued (Finding Contributing Points)

Let B0 be the bounded component ofMR containing the origin. The cones N(σ1)

and N(σ2) are rays which contain −(∇h)(σ1) and −(∇h)(σ2), respectively, meaning
the critical points σ1 and σ2 are always contributing singularities. Furthermore,
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Fig. 8.5 The signed fibers (+ and −) around each contributing singularity for r̂1 ∈ (0, 2/3), left,
and r̂1 ∈ (2/3, 3/4), right. The situation when r̂1 ∈ (3/4, 1) is analogous to that of r̂1 ∈ (0, 2/3).
Note that the signs in all bounded components not containing the origin cancel. Each τσ j is a
linking torus, defined later in this section.

N(σ12) =

{(
8a + 9b

12
,
4a + 3b

12

)
: a, b > 0

}
so that (−∇h)(σ12) ∈ N(σ12) if and only if r̂1 ∈ (2/3, 3/4). In other words, σ12 is
contributing if and only if r is a generic direction and σ1,σ2 < B0. Figure 8.4 shows
the contributing points in different situations.

8.2.3 Step 3: Express the Cauchy Integral as Sum of Local
Contributing Integrals

We have now split the Cauchy integral describing the coefficients of interest into a
finite sum of integrals over imaginary fibers, and identified contributing singularities
where local behaviour of F will dictate coefficient asymptotics. We next show that
the expression in Proposition 8.1 for a sum of integrals over fibers near the origin can
be replaced by an explicit sum of integrals over fibers near each contributing point.
This is the most difficult step of our argument, and the hardest step to generalize to
arbitrary rational functions.

Example 8.3 Continued (Preparing for Residue Computations)

There are three different situations, depending on whether r̂1 lies in (0, 2/3),
(2/3, 3/4), or (3/4, 1). In the first and third cases there are two contributing points,
both of which are smooth, while in the second case there are three contributing
points. The different situations are illustrated in Figure 8.5.
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As in Figure 8.2 above, let B0 be the bounded component ofMR containing the
origin, and B1 and B2 be the other bounded components ofMR in the first quadrant.
Suppose, for instance, that r̂1 ∈ (0, 2/3) so σ1 and σ2 are the only contributing
points, with σ1 on the boundary of B0. One can imagine moving the basepoint of
the Cauchy integral in (8.10) to be arbitrarily close to σ1 while staying in B0,

[xr1nyr2n]F(x, y) =
1
(2πi)2

∫
(ε,ε)+iR2

ω =
1
(2πi)2

∫
σ1−(ε,ε)+iR2

ω.

In order to reduce to a residue computation, we add and subtract an integral over a
signed fiber with basepoint arbitrarily close to σ1 in B1,

[xr1nyr2n]F(x, y) =
1
(2πi)2

[∫
σ1−(ε,ε)+iR2

ω −

∫
σ1+(ε,ε)+iR2

ω

]
+

1
(2πi)2

∫
σ1+(ε,ε)+iR2

ω.

We now have an extra integral with basepoint in B1, but this can be moved arbitrarily
close to the contributing point σ2, after which we add and subtract an integral over
a signed fiber with basepoint in an unbounded component ofMR,

[xr1nyr2n]F(x, y) =
1
(2πi)2

[∫
σ1−(ε,ε)+iR2

ω −

∫
σ1+(ε,ε)+iR2

ω

]
+

1
(2πi)2

[∫
σ2−(ε,ε)+iR2

ω −

∫
σ2+(ε,ε)+iR2

ω

]
+

1
(2πi)2

∫
σ2+(ε,ε)+iR2

ω.

As σ2 + (ε, ε) lies in an unbounded component of MR, the final integral here is
zero. We show below that each of the differences of integrals can be reduced to a
one-dimensional integral by a residue computation.

When r̂1 ∈ (3/4, 1) the analysis the same after replacing σ1 by σ2 and B1 by B2.
When r̂1 ∈ (2/3, 3/4) the analysis is similar except the integral with basepoint near
the origin is moved to the contributing singularity σ12 on the intersectionV1 ∩V2.
Now signed integrals over fibers with basepoints in three components of MR are
added: one has a basepoint in the unbounded component of MR adjacent to σ12
while the other two have basepoints in the bounded components B1 and B2. Adding
signed integrals over fibers with basepoints near the smooth contributing points
cancels out the integrals whose fibers intersect the bounded components B1 and B2.

Recall also that the Cauchy integrals appearing in Proposition 8.1 are signed
depending on the orthant of their basepoint. As all contributing singularities were in
the first quadrant here, the leading sign was positive.

In order to properly talk about adding and subtracting imaginary fibers, with-
out worrying about fibers with basepoints in unbounded components of MR, we
introduce the notion of a chain of integration.
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Definition 8.9 (chains of integration)A chain of integration inM is a formal integer
linear combination of imaginary fibers a1Cx1 + · · · + akCxk , where each xj ∈ MR
and aj ∈ Z. Integration over such a chain is defined by linearity,∫

a1Cx1+· · ·+ak Cxk

f (z)dz = a1

∫
Cx1

f (z)dz + · · · + ak

∫
Cxk

f (z)dz

for any function f where each integral is defined; by definition any integral over the
empty chain 0 equals zero. We write

a1Cx1 + · · · + akCxk � 0 (8.12)

if and only if for every bounded component B ⊂ MR the integer coefficients aj of all
imaginary chains in (8.12) with basepoints in B sum to zero (i.e., after identifying all
basepoints in the same components ofMR, and simplifying the linear combination,
the only remaining fibers have basepoints in unbounded regions of MR). Then �
gives an equivalence relation on chains by setting κ1 � κ2 if and only if κ1 − κ2 � 0.

Because
∫
Cx
ω = 0 whenever x lies in an unbounded component of MR, the

integral
∫
κ
ω depends only on the equivalence class [κ] of a chain κ under �.

Definition 8.10 (linking tori) Given component B ⊂ MR, we define the class [CB]
ofCB under � as [Cx] for any x ∈ B. If B is an unbounded component then [CB] = [0].
For any x ∈ VR the set of adjacent components to x is the collection

Adj(x) =
{
B ∈ B : x ∈ B

}
of components of MR with x in their closure. Given σ in the strata Sk1,...,ks and
B ∈ Adj(σ), the sign of B with respect to σ is

sgnσ(B) = sgn
(
`k1 (x) · · · `ks (x)

)
for any x ∈ B. A linking torus around a critical point σ ∈ Ω is any chain of
integration τσ such that

τσ �
∑

B∈Adj(σ)

sgnσ(B)CB,

well defined up to a selection of basepoints in each bounded component of Adj(σ)
and up to adding imaginary fibers with basepoints in unbounded components ofMR.

Remark 8.9 This definition is highly tailored to our needs.More generally, one would
work in the framework of relative homology on the spaceM ⊂ Cd with respect to
the height function h (see, for instance, Baryshnikov et al. [1]).

We will prove that the Cauchy integral describing the coefficients of interest can
be written as the sum of integrals over the linking tori for each contributing point
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Fig. 8.6 Proving linear independence of the linking tori for Lemma 8.2, with the critical points and
signs of imaginary fibers for each linking torus displayed. The hyperplanes containingσ j (the dark
point) form the shaded bounded region R in the first quadrant. The signs of the imaginary fibers
around each critical pointσ , σ j in R whose basepoints lie in R sum to zero.

of F. First, we show that the chain defined by any imaginary fiber is a unique integer
sum of linking tori.

Lemma 8.2 Suppose F is simple and r is generic. For any component B ∈ B there
exist unique integers νB,σ such that

CB �
∑
σ∈Ω

νB,σ τσ . (8.13)

Furthermore, νB,σ = 0 unless B is bounded, B and σ lie in the same orthant of Rd ,
and h(σB) ≤ h(σ).

Proof If B is unbounded the result holds with all νB,σ = 0. Otherwise, let σ = σB

be the critical point minimizing h on B. Since

τσ �
∑

B′∈Adj(σ)

sgnσ(B
′)CB′,

it follows that

sgnσ(B)CB � τσ −
∑

B′∈Adj(σ)\{B}

sgnσ(B
′)CB′ . (8.14)

For any component B′ ∈ Adj(σ) \ {B} the minimizer of h on B′ is not σ, but σ lies
on B′. Thus, either there existsσ′ ∈ Ω∩B′with h(σ′) < h(σ) or B′ is unbounded. In
other words, up to sign, the fiber CB equals τσ plus an integer linear combination of
imaginary fibers defined by components B′ of smaller height. Continually iterating
the decomposition of (8.14) on each CB′ thus eventually leaves only imaginary fibers
with basepoints in unbounded components of MR, all of which lie in the same
orthant of Rd .
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Uniqueness of the νB,σ follows from linear independence of the τσ , which we
now prove. Suppose there exist σ1, . . . ,σc ∈ Ω and a1, . . . , ac ∈ Z such that

a1τσ1 + · · · + acτσc � 0. (8.15)

Replacing each torus in (8.15) by a signed sum of imaginary fibers gives∑
B∈B

cBCB � 0

for integers cB which can be written in terms of the aj . By definition, (8.15) holds if
and only if cB = 0 for all bounded B.

Given a critical point σ the codimension of σ, denoted codim(σ), is the codi-
mension of the stratum S(σ) which contains it (so a critical point which lies on the
intersection of k hyperplanes and no proper subflat has codimension k). We will go
iteratively through the critical points σ j to prove that each aj in (8.15) equals zero.
To that end, let σ j be any of the critical points of minimal codimension among those
for which we have not yet shown that aj = 0. Let O denote the orthant containing σ j

with the hyperplanes Vk containing σ j removed. Since σ j is a critical point, the
orthant O contains a bounded connected component R ⊂ Rd and, since each cB = 0,∑

B∈B
B⊂R

cB = 0; (8.16)

see Figure 8.6. Consider (8.16) as an expression in the coefficients ak from (8.15).
If we know that some ak = 0 then ak does not affect (8.16). Otherwise,

• If σk , σ j lies outside of R then ak does not appear in (8.16).
• If σk , σ j lies inside of R then the contribution of ak to (8.16) is zero, since τσk

is the signed sum of 2codim(σk ) imaginary fibers, each of which lies in R with an
equal number of positive and negative signs appearing.

• If σk , σ j lies on the boundary of R then suppose the smallest flat containing
both σk and σ j has codimension N . Note N ≤ codim(σ j) ≤ codim(σk) by our
selection of σ j, so N < codim(σk) or else σ j and σk would be distinct critical
points on a single stratum, contradicting Lemma 8.1. Again the contribution of ak
to (8.16) is zero, since τσk

is the sum of 2codim(σk ) signed imaginary fibers, of
which 2codim(σk )−N have basepoints in R, and an equal number of positive and
negative signs appear among those basepoints in R.

Thus, each torus τσk
for k , j is a signed sum of imaginary fibers whose contribu-

tions to (8.16) cancel out, and

0 =
∑
B∈B
B⊂R

cB = ±aj .

Repeating this argument eventually implies that all aj = 0. �
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Definition 8.11 (linking constants) For any B ∈ B and σ ∈ Ω the constant νB,σ
in (8.13) is called the linking constant of B and σ.

Applying Lemma 8.2 to Proposition 8.1 proves that the series coefficients of
interest can be written as an integer linear combination of integrals over linking tori.
In Chapter 9 we will see how Stratified Morse Theory provides the foundation for
a similar result when H(z) is not necessarily the product of linear functions. What
is special about having only linear factors in the denominator, in addition to our
simplified arguments, is that we can identify the integer linking constants.

The key step is the following lemma, which allows us to connect how imaginary
fibers in adjacent components ofMR are represented in terms of linking tori. Since
Proposition 8.1 starts with a sum of imaginary fibers near the origin, this will allow
us to move through the bounded components ofMR and determine which linking
tori appear.

Lemma 8.3 Suppose F is simple and let B and B′ be two components ofMR in the
same orthant O of Rd which are separated by a unique hyperplane. If σ∗ ∈ Ω does
not lie on this separating hyperplane then νB,σ∗ = νB′,σ∗ .

If B is an unbounded component of MR then there is no well-defined critical
point σB, but to unify notation we write h(σB) = −∞.

Proof Under our hypotheses there exist j ∈ {1, . . . ,m} and εi ∈ {±1} for all
1 ≤ i ≤ m such that

B = {x ∈ O : εi`i(x) > 0 for all 1 ≤ i ≤ m}

B′ = {x ∈ O : εi`i(x) > 0 for all i , j, and εj`j(x) < 0}.

If both B and B′ are unbounded then the desired result holds as both integers are
zero. If B and B′ are bounded then one of the critical points σB and σB′ must lie on
the hyperplane Vj : if not then the line through σB and σB′ intersects Vj at some
point in the closure of B and B′ which, by strict convexity of h, has smaller height
than either σB or σB′ and contradicts their minimality. If B is bounded but B′ is
unbounded then the same argument with σB′ replaced with any point of B′ with
arbitrarily small height shows σB ∈ Vj . Thus, without loss of generality we may
assume that B is bounded and `j(σB) = 0. Because B and B′ are separated only
byVj we have sgnσB

(B) = − sgnσB
(B′) and manipulating the sum for τσB yields

sgnσB
(B) [CB − CB′] � τσB −

∑
B′′∈A\{B,B′ }

sgnσB
(B′′)CB′′, (8.17)

where A = Adj(σB) contains the components ofMR with σB in their closure.
We prove that the coefficient of τσ∗ appearing in the right-hand side of (8.17) is

zero for any σ∗ ∈ Ω \ Vj by induction on the maximum of h(σB) and h(σB′). The
base case occurs when B and B′ are unbounded and both heights are negative infinity.
Otherwise, all elements ofA\{B, B′} have height less than h(σB) and can be grouped
into pairs of components separated only by the hyperplaneVj . The imaginary fibers
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Fig. 8.7 The hyperplanes throughσ divide the positive orthant into four regions. The integersνB,σ
take a common value when B differs between adjacent components ofMR in one of these regions.
For instance, in this example νB1,σ = νB2,σ and νB3,σ = νB4,σ .

corresponding to any such pair of components (B1, B2) appear with opposite sign
on the right-hand side of (8.17), and by the induction hypothesis νB1,σ∗ = νB2,σ∗ .
Thus, the coefficient of τσ∗ on the right-hand side of (8.17) is zero, which means
that νB,σ∗ = νB′,σ∗ . �

Lemma 8.3 immediately gives us the diagonal sequence under consideration as
an explicit sum of integrals over linking tori, the most important theoretical result of
this chapter.

Theorem 8.1 Consider the power series expansion of simple F(z) and let r be a
generic direction with positive coordinates. If χ denotes the set of contributing
singularities of F(z) then

[znr]F(z) =
∑
σ∈χ

sgn(σ)
(2πi)d

∫
τσ

G(z)
znr+1 ∏m

j=1 `j(z)p j
dz, (8.18)

where τσ is the linking torus from Definition 8.10.

Proof Let O be an orthant ofRd and B0 be the component ofMR∩O whose closure
contains the origin. By Proposition 8.1 it is sufficient to show that

CB0 �
∑

σ∈χ∩O

τσ .

Lemma 8.2 implies νB0,σ = 0 unless σ ∈ O. Thus, we need to prove that for any
critical point σ ∈ Ω ∩ O

νB0,σ =

{
1 : σ is a contributing singularity
0 : otherwise

.

Suppose σ lies on the flat Vk1,...,ks and no proper subflat. Then the union of the
hyperplanesVk1, . . . ,Vks divides O into 2s connected regions,
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O \
(
Vk1 ∪ · · · ∪ Vks

)
= O1 ∪ · · · ∪ O2s ,

and each component B′ of MR ∩ O lies in one of the Oj ; see Figure 8.7 for an
example. Lemma 8.3 states that the linking constant νB′,σ depends only on the
region Oj in which B′ is contained, and each of these regions contain a component
adjacent to σ. On the region containing the component B = B(σ), Equation (8.14)
shows the linking constant has the common value sgnσ(B), which equals 1 since σ
is a contributing singularity. On every other region the component adjacent to σ has
smaller height than σ, meaning the linking constant on that component (and thus
every other component in the same region) is zero by Lemma 8.2. Corollary 8.1
therefore implies that B0 lies in the same region Oj as B(σ) if and only if σ is a
contributing singularity. �

8.2.4 Step 4: Compute Residues

We now have an exact expression for the coefficients of interest as a sum of inte-
grals over imaginary fibers. The final steps of the analysis are concerned with the
asymptotic evaluation of the integrals appearing in (8.18). After using residue com-
putations to reduce to saddle-point integrals, we obtain asymptotics through the use
of Proposition 5.3 in Chapter 5.

The simplest case is when a contributing singularity lies on a flat defined by
the intersection of d linear factors; this is known as a complete intersection. In
the complete intersection case taking residues allows one to exactly determine the
Cauchy integral, and no saddle-point integral approximations are necessary.

Example 8.3 Continued (Asymptotics in the Complete Intersection Case)

Let r̂1 ∈ (2/3, 3/4), so that σ12 = (1, 1) is the contributing singularity of maximum
height (and the one on the unique bounded component ofMR which is adjacent to the
origin). Then, up to an exponentially decaying error coming from the contributing
singularities of lower height, the sequence δn = [xr1nyr2n]F(x, y) equals

δn =
1
(2πi)2

∑
(κ1,κ2)∈{±1}2

κ1κ2

∫
1−εκ+iR2

1(
1 − 2x+y

3

) (
1 − 3x+y

4

) dx dy
xr1n+1yr2n+1

(8.19)
for any ε > 0 sufficiently small. Making the substitution (a, b) = (1 − x, 1 − y)

in (8.19) to move σ12 to the origin gives

δn =
1
(2πi)2

∑
(κ1,κ2)∈{±1}2

κ1κ2

∫
εκ+iR2

1(
2a+b

3

) (
3a+b

4

) da db
(1 − a)r1n+1(1 − b)r2n+1 .

(8.20)
Let
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M =
(
b(1)
b(2)

)
=

(
2/3 1/3
3/4 1/4

)
so that M−1 =

(
−3 4
9 −8

)
. Making the change of variables

(
p
q

)
= M

(
a
b

)
in (8.20) then

implies

δn =
1

(det M)(2πi)2
∑

(κ1, κ2)∈{±1}2
κ1κ2

∫
εκ+iR2

1
pq

dp dq

(1 + 3p − 4q)r1n+1(1 − 9p + 8q)r2n+1 .

(8.21)

Repeating the argument of Proposition 8.1, in reverse, implies that this signed sum
of integrals equals the integral over a product of circles,

δn =
1

(det M)(2πi)2

∫
Tε×Tε

1
pq

dp dq
(1 + 3p − 4q)r1n+1(1 − 9p + 8q)r2n+1

where Tε = {εeiθ : −π < θ ≤ π}. Applying the univariate residue theorem (twice)
thus gives

[xr1nyr2n]F(x, y) = δn +O(τn) =
1

det M
+O(τn) = 12 +O(τn),

for some 0 < τ < 1.

When σ lies in a flat defined by less than d equations, one first computes a
sequence of residues and thenmust dealwith an additional integralwhich is amenable
to a saddle-point analysis.

Example 8.3 Continued (Asymptotics in the Non-Complete Intersection Case)

Consider the main diagonal direction r1 = r2 = 1 so σ1 = (3/4, 3/2) ∈ V1 is the
contributing singularity of maximum height (and the one on the unique bounded
component of MR which is adjacent to the origin). For ε > 0 sufficiently small,
the points (3/4, 3/2) ± ε(3/2, 0) lie in the two components of MR whose closure
contains σ1. Thus, up to an error decreasing exponentially faster than (8/9)n, the
diagonal sequence [xnyn]F(x, y) equals

δn =
1
(2πi)2

∑
κ∈{±1}

κ

∫
(3/4,3/2)−κε(3/2,0)+iR2

(
1 − 3x+y

4

)−1(
1 − 2x+y

3

) dx dy
xn+1yn+1 . (8.22)

Let M be the matrix
M =

(
b(1)

0 1

)
=

(
2/3 1/3
0 1

)
.
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Making the change of variables
(
p
q

)
= M

(
σ1 −

(
x
y

))
in (8.22) implies

δn =
1
(2πi)2

∑
κ∈{±1}

κ

∫
(κε,0)+iR2

16
p(1 + 18p − 2q)

dp dq

(3/4 − 3p/2 + q/2)n+1(3/2 − q)n+1 . (8.23)

Thus, if ω̃ is the integrand in (8.23) then there exists τ ∈ (0, 8/9) such that

[xnyn]F(x, y) =
1

(det M)(2πi)2

[∫
(ε,0)+iR2

ω̃ −

∫
(−ε,0)+iR2

ω̃

]
+O(τn). (8.24)

As one deforms the domain of integration (ε, 0)+iR2 into (−ε, 0)+iR2 bymoving the
basepoint (ε, 0) on the line segment to (−ε, 0), the only singularities of ω̃ encountered
are those lying in the set

Γ = {(0, is) : s ∈ R} = {0} × iR.

The difference of integrals in (8.24) thus equals the integral over the tubular domain

Tε × iR = {(εeiθ, is) : −π < θ ≤ π, s ∈ R}

around Γ, and the (univariate) residue theorem implies

[xnyn]F(x, y) =
3

2(2πi)2

∫
Tε×iR

16
p(1 + 18p − 2q)

dp dq

(3/4 − 3p/2 + q/2)n+1(3/2 − q)n+1 +O(τ
n)

=
3

4πi

∫
iR

16
(1 − 2q)

dq

(3/4 + q/2)n+1(3/2 − q)n+1 +O(τ
n).

Unlike the complete intersection case, asymptotics of this remaining integral must
be calculated using the saddle-point method. Making a final change of variables
q = iw gives

[xnyn]F(x, y) =
3

4π

∫
R

128
(1 − 2iw)(9 + 4w2)

e−n log(9/8+w2/2)dw +O(τn),

and Proposition 5.3 of Chapter 5 implies

[xnyn]F(x, y) =
(
8
9

)n
n−1/2 16

√
π

(
1 +O

(
1
n

))
.

We now give the general argument. Let σ be a contributing singularity on the
flatVS with S = {k1, . . . , ks}, and to save space define

Iσ =
sgn(σ)
(2πi)d

∫
τσ

G(z)
znr+1 ∏m

j=1 `j(z)p j
.
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As we assume the b(k j ) are linearly independent, up to a reordering of variables and
the `k j we may also assume that the matrix

M =

©«

b(k1)

...

b(ks )
e(s+1)

...

e(d)

ª®®®®®®®®®¬
(8.25)

is non-singular, where once again e(j) denotes the jth elementary basis vector. Let

G̃(z) = G(z)
z1 · · · zd

∏
j<S `j(z)p j

,

so that the Cauchy integrand ω from (8.3) can be written

ω =
G̃(z)

`k1 (z)pk1 · · · `ks (z)pks znr .

Finally, given κ ∈ {±1}s let

vκ = M−1
(
κ1e(1) + · · · + κse(s)

)
.

By definition, the dot product vκ ·b(k j ) = κj for all j = 1, . . . , s. If xκ = σ − εvκ then
`k j (xκ) = εκj for j = 1, . . . , s, so for ε > 0 sufficiently small the set {xκ : κ ∈ {±1}s}
consists of 2s real points, one in each of the 2s components ofMR adjacent to σ.
Note that x1 is contained in the component B(σ) on which σ minimizes h.

If we assume that pk1 = · · · = pks = 1, so that each linear factor in the denominator
of F appears only to first order, then

Iσ =
sgn(σ)
(2πi)d

∑
κ∈{±1}s

sgn(κ)
∫
Cxκ

G̃(z)
`k1 (z) · · · `ks (z)znr dz,

and making the change of variables w = M(σ − z) yields

Iσ =
sgn(σ)

| det M | (2πi)d
∑

κ∈{±1}s
sgn(κ)

∫
ε(κ,0)+iRd

G̃
(
σ − M−1w

)
w1 · · ·ws

(
σ − M−1w

)nr dw.

Replacing the alternating sum of integrals with an integral over a product of circles,
and applying the residue theorem s times, gives
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Iσ =
sgn(σ)

| det M | (2πi)d

∫
Ts
ε ×iRd−s

G̃
(
σ − M−1w

)
w1 · · ·ws

(
σ − M−1w

)nr dw

=
sgn(σ)

| det M | (2πi)d−s

∫
iRd−s

G̃
(
σ − M−1w

)(
σ − M−1w

)nr

�����
wj=0, j≤s

dws+1 · · · dwd

=
sgn(σ)σ−nr

| det M | (2π)d−s

∫
Rd−s

Aσ(y)e−nφσ (y)dy, (8.26)

where yj = (−i)ws+j for 1 ≤ j ≤ d − s and

Aσ(y) = G̃
(
σ − iM−1

(
0
y

))
, φσ(y) =

d∑
j=1

rj log
©«
σj − i

(
M−1

(
0
y

))
j

σj

ª®®®®¬
. (8.27)

Note that the real part of φσ is the height function h, and that by construction the
gradient of φσ vanishes at the origin. When d = s, i.e., in the case of a complete
intersection, (8.26) is taken to mean

Iσ =
G̃(σ)
| det M |

σ−nr =
G(σ)

σ1 · · ·σd
∏

j<S `j(σ)
p j | det M |

σ−nr.

Combining this calculation with Theorem 8.1 gives the following.

Proposition 8.3 Consider the power series expansion of simple F(z) and suppose r
is a generic direction with positive coordinates. If p = 1 and χ denotes the set of
contributing singularities of F(z) then

[znr]F(z) =
∑
σ∈χ

Iσ, (8.28)

where Iσ is defined in (8.26) using the quantities in (8.25) and (8.27).

For general p ∈ Nm, when the linear factors in the denominator appear to higher
order,

Iσ =
1

| det M | (2πi)d

∫
Ts
ε ×iRd−s

G̃
(
σ − M−1w

)
w

pk1
1 · · ·w

pks
s

(
σ − M−1w

)nr dw, (8.29)

and the iterated residue obtained by integrating over the product of circles in the
variables w1, . . . ,ws is

Rσ (ws+1, . . . , wd ) =
1

(pk1 − 1)! · · · (pks − 1)!

×
©« ∂pk1+···+pks −s

∂w
pk1−1
1 · · · ∂w

pks −1
s

ª®¬
G̃

(
σ −M−1w

)(
σ −M−1w

)nr

������
w1=···=ws=0

.

(8.30)



8.2 Asymptotics in Generic Directions 333

Repeated differentiation shows

Rσ = Pσ(n) ×
(
σ − M−1w

)−nr���
w1=· · ·=ws=0

,

where Pσ(n) is a polynomial

Pσ(n) =
pk1+· · ·+pks−s∑

j=1
aj,σ(ws+1, . . . ,wd) n j, (8.31)

in n whose coefficients are rational functions in ws+1, . . . ,wd which are analytic at
the origin. The leading coefficient of Pσ(n) is

apk1+· · ·+pks−s,σ
=

s∏
j=1

vj(w)pk j −1

(pk j − 1)!
G̃

(
σ − M−1w

)������
w1=· · ·=ws=0

,

where v(w) =
(

r1
σ1−(M−1w)1

· · ·
rd

σd−(M−1w)d

)
· M−1. Thus, we obtain the following.

Proposition 8.4 Consider the power series expansion of simple F(z), and suppose r
is a generic direction with positive coordinates. If χ denotes the set of contributing
singularities for F(z) then

[znr]F(z) =
∑
σ∈χ

Iσ, (8.32)

where, for σ on the flat defined by the vanishing of `k1, . . . , `ks appearing in the
denominator of F(z) to multiplicities pk1, . . . , pks ,

Iσ =
pk1+· · ·+pks−s∑

j=0
n j

∫
Rd−s

Aj,σ(y)e−nφσ (y)dy

for effective rational functions Aj,σ = aj,σ(−iy1, . . . ,−iyd−s) determined by (8.30)
and (8.31) and φσ determined by (8.25) and (8.27).

Remark 8.10 When d = s the residue Rn depends only on n. Thus, if σ lies on a
complete intersection then Iσ = σ−nrPσ(n), where Pσ(n) is a polynomial in n of
degree pk1 + · · · + pkd − d.

8.2.5 Step 5: Determine Asymptotics

Recall Proposition 5.3 from Chapter 5, which determines an asymptotic expansion
for integrals of the form appearing in Propositions 8.3 and 8.4. The following result
provides the only missing details we need for asymptotics, and can be viewed as an
analogue of Lemma 5.6 in Chapter 5 which holds beyond the smooth case.
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Lemma 8.4 Fix an orthant O ⊂ Rd . For any real flat L = V ′
k1,...,ks

bounded in O,
the critical point σ(r) of L in O for the direction r varies smoothly with r. As s varies
over a neighbourhood of r in Rd∗ the values of σ(s) cover a neighbourhood of σ(r)
in L. Furthermore, if A is the d × (d − c) submatrix of M−1 consisting of its d − s
rightmost columns, and D is the diagonal matrix with entries √r1/σ1, . . . ,

√
rd/σd ,

then the Hessian of φσ defined by (8.27) at the origin equals

Hσ = (DA)T (DA), (8.33)

which has strictly positive determinant.

Proof Recall the explicit parametrization (8.9) for the critical points on the flat L,
derived in the proof of Lemma 8.1. Differentiating the right-hand side of (8.9) with
respect to zb and substituting z′ = σ′ gives

d∑
j=1

rj
σ2
j

M−1
j,aM−1

j,b,

so the Jacobian of the system (8.9) with respect to z′ at σ′ equalsHσ = (DA)T (DA).
Because of the form of Hσ , the Cauchy-Binet formula (see Problem 8.9) implies
its determinant is a sum of the squares of the determinants of the (d − s) × (d − s)
submatrices of DA. Since the final d − s rows of DA form a diagonal matrix Λ with
non-zero entries √rs+1/σs+1, . . . ,

√
rd/σd , this in turn implies

detHσ ≥ (detΛ)2 =
rs+1 · · · rd
σ2
k+1 · · ·σ

2
d

> 0,

and Hσ is non-singular. Thus, the critical point σ(r) varies smoothly with r and
when s varies over a neighbourhood of somefixed r thenσ(s) covers a neighbourhood
of σ(r) in L. Since the system (8.9) is formed from the gradient of h(z′) in (8.8),
the Jacobian of (8.9) equals the Hessian of h(z′). The function φ(y) in (8.27) equals
−h(z′) after a substitution of the form zj = Cj − iyj for constants Cj . This implies
the Hessian of φ(y) is −(−i)(−i)Hσ = Hσ . �

Theorem 8.2 Consider the power series expansion of simple F(z), suppose r is a
generic direction with positive coordinates, and let χ denote the set of contributing
singularities for F(z). Then there exist asymptotic series Φσ(n) such that

[znr]F(z) =
∑
σ∈χ

Φσ(n). (8.34)

In particular, if σ lies on the flat VS with S = {k1, . . . , ks} then, for any positive
integer K , there exist effective constants Cσj such that

Φσ(n) = σ−nr npk1+· · ·+pks−(s+d)/2 ©«
K∑
j=0

Cσj n−j +O
(
n−K−1

)ª®¬ . (8.35)
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If G(σ) , 0 then the leading asymptotic term of Φσ is

Cσ0 =
s∏
j=1

v
pk j −1
j

(pk j − 1)!
×

G(σ)∏
j<S `j(σ)

p j
×

det(Hσ)−1/2

σ1 · · ·σd | det M | (2π)(d−s)/2
, 0,

where M is defined in (8.25), Hσ is defined in (8.33), and v =
(
r1
σ1
· · ·

rd
σd

)
· M−1.

The implied constant in the error term of (8.35) can be uniformly bounded as r
varies in any connected compact set which does not contain a non-generic direction.

Proof As stated above, this is an application of Proposition 5.3 from Chapter 5 to
Proposition 8.4. In particular, if σ ∈ χ and φσ(y) is defined by (8.27) then

• φσ and its gradient vanish at the origin by direct inspection;
• Lemma 8.4 shows that the Hessian matrixHσ is non-singular;
• the real part of φσ is

<(φσ) =

d∑
j=1

rj log

���������
σj − i

(
M−1

(
0
y

))
j

σj

��������� ,
which is non-negative on Rd−s , and equal to 0 precisely when y = 0.

• because φσ(y) has strictly negative real part when y is bounded away from
the origin, which is an isolated critical point, we can restrict each integral in
Proposition 8.4 to a neighbourhood where the origin is the only critical point
of φσ while introducing only an exponentially negligible error.

This verifies all the necessary conditions to apply Proposition 5.3. �

Figure 8.8 presents our current asymptotic picture for our running Example 8.3.

Remark 8.11 When σ is a contributing singularity there exist a1, . . . , as > 0 with

−(∇h)(σ) = a1b(k1) + · · · + asb(ks ),

so that
(
a 0

)
M = −(∇h)(σ). Thus, for 1 ≤ j ≤ s the constants vj in Theorem 8.2 are

vj = aj > 0. When there is a single contributing singularity σ of maximum height,
and G(σ) , 0, then Theorem 8.2 gives dominant asymptotics of the coefficient
sequence,

[znr]F(z) ∼ σ−nr npk1+· · ·+pks−(s+d)/2

×

s∏
j=1

v
pk j −1
j

(pk j − 1)!
×

G(σ) det(Hσ)−1/2

σ1 · · ·σd
∏

j<S `j(σ) | det M | (2π)(d−s)/2
.

In the simple pole case, when each pj = 1, this simplifies further to
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b

0 a
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?
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3a(a+b)a+b
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n n−1/2 9(a+b)3/2√
2abπ(a−3b)

2a(a+b)a+b
3a+baabb

n n−1/2 4
√
2(a+b)3/2√
abπ(2b−a)

Fig. 8.8 The three asymptotic regimes for the coefficients [xanybn]F(x, y) of the rational function
F(x, y) = 1

/(
1 − 2x+y

3

) (
1 − 3x+y

4

)
. Asymptotics in non-generic directions have not yet been

derived and are thus denoted by question marks.

[znr]F(z) ∼ σ−nr n(d−s)/2
G(σ) det(Hσ)−1/2

σ1 · · ·σd
∏

j<S `j(σ) | det M | (2π)(d−s)/2
.

Unfortunately, when the numerator of F vanishes at the contributing singularities
determining dominant asymptotics can be more difficult.

Example 8.4 (Asymptotics With Vanishing Numerator)

Returning to an example from Chapter 5, let

B(x, y) =
x − 2y2

1 − x − y
and C(x, y) =

x − y

1 − x − y
.

In the main diagonal direction r = (1, 1) the functions B and C both admit the single
contributing singularity σ = (1/2, 1/2), but while [xnyn]B(x, y) has the expected
exponential growth of 4n, even though its numerator vanishes at σ, the sequence
[xnyn]C(x, y) is identically zero.

Given a contributing singularity σ, the saddle-point integral Iσ in (8.32) can be
written as a series in n−1, and we can determine any number of terms in the series
using Proposition 5.3 of Chapter 5.

Remark 8.12 When σ lies on a complete intersection then Iσ = σ−nrPσ(n), where
Pσ(n) is a polynomial in n of degree pk1+· · ·+pkd−d. Thus, to determinewhether Iσ
is identically zero one simply needs to compute the first pk1 + · · · + pkd − d terms of
its asymptotic expansion using Proposition 5.3.
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Algorithm 4: GenericHyperplaneAsymptotics
Input: Rational function F(z) = G(z)/

∏m
j=1 `j (z)p j with linear `j (z) = 1 − b( j) · z, and

direction r = (r1, . . . , rd )
Output: Asymptotic expansion of [znr]F(z) as n→∞, uniform in compact set around r

if matrix with rows b( j) not full rank then
run Algorithm 5 (SimpleDecomp) on F and apply GenericHyperplaneAsymptotics to
to each summand in the result

end
compute the flats defined by the `j (z)
find the critical points on each flat by solving (8.2)
sort the critical points using height function hr and setσ equal to point of max height
while no contributing points have been found do

compute the cone N (σ) from Definition 8.8
if (−∇h)(σ) on boundary of N (σ) then

return fail, “r not a generic direction”
end
if (−∇h)(σ) < N (σ) then

setσ to next lowest height critical point and repeat loop
end
if G(σ) , 0 then

σ is a contributing singularity
repeat above steps to identify contributing singularities of the same height asσ

else if G in polynomial ideal generated by the factors `j with `j (σ) = 0 then
replace F by sum of rational functions using (8.36) and analyze each summand

else
return fail

end
end
return sum of contributions (8.35) from each contributing singularity of highest height

There is not currently an effective characterization for vanishing of the integral Iσ .
On the other hand, Lemma 8.4 implies that a critical point σ(s) covers a neighbour-
hood of its flat L when s moves over a neighbourhood in Rd . Thus, if G(σ(s)) = 0
vanishes for all s in some open set of Rd then G vanishes identically on L. In par-
ticular, this implies that if L is defined by the vanishing of `1, . . . , `s then there exist
polynomials Q1, . . . ,Qs such that

G(z) = Q1(z)`1(z) + · · · +Qs(z)`s(z).

In other words,

G(z)∏m
1≤ j≤m `j(z)p j

=
Q1(z)∏m

j=1 `j(z)p j /`k1 (z)
+ · · · +

Qs(z)∏m
j=1 `j(z)p j /`ks (z)

, (8.36)

and this can be detected automatically by a Gröbner basis computation (of the kind
discussed in Chapter 7). The analysis at any such critical point σ(s) can then be
applied to the summands, each of which has a denominator which vanishes to lower
order at σ(s). If each pk j = 1 then the hyperplane arrangement defined by any
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Fig. 8.9 Plot of singular hyperplanes and contributing singularities for our three-dimensional
example (note only 5 of the 7 contributing singularities are visible from this angle).

summand does not contain the flat L and Iσ(s) is identically zero. Thus, for most
directions either G(σ) , 0 at all contributing singularities σ or Iσ is identically zero
for some contributing singularity in a manner that we are able to detect.

Algorithm 4 lists the computations needed to determine asymptotics. Implemen-
tations of Algorithm 4 are linked on the book website.

Example 8.5 (A Three-Dimensional Example)

Consider the three-dimensional example

F(x, y, z) =
x + y + z

(1 − 2x − 3y − 4z)(1 + 4x + 3y + 2z)(1 + x − y + z)
,

and label the denominator factors `1, `2, and `3 from left to right. Using an implemen-
tation of Algorithm 4, we find that there are seven contributing singularities in the
direction r = (1, 1, 2): one each on the hypersurfacesV1,V2, andV3, two points (nec-
essarily in different orthants) on the flatV1,2, and one point on each of the flatsV1,3
and V2,3. The unique contributing point of highest height is σ = (1/8, 1/12, 1/8)
onV1, giving dominant asymptotics [xnynz2n]F(x, y, z) = 6144n

n

( √
2

14π +O(1/n)
)
.

8.2.6 Dealing with Non-Simple Arrangements

Our main results above require the factors `j in the denominator to be linearly inde-
pendent. Luckily, when dependencies between the factors do exist such relations can
be used to decompose the rational function of interest into a sum of functions where
this is no longer a problem. The key observation is that from a linear dependence

a1`k1 (z) + · · · + as`ks (z) = 0 (8.37)
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Fig. 8.10 Plots of the linearly dependent lines `1, `2, `3 together with the critical points for r = (1, 2)
on the left, r = (3, 2) in the centre, and r = (8, 2) on the right.

with non-zero constants one can divide by any aj`k j (z) and then divide by any
product of linear factors in the denominator to obtain

1
`q =

1
`
q1
1 · · · `

qm
m

=
∑

1≤i≤s
i,j

(−ai/aj)

`qi, j
, (8.38)

for any q ∈ Nm, where qi, j = q+ e(k j ) − e(ki ) is one larger than q in its jth coordinate
and one smaller than q in its ith coordinate.

Example 8.6 (A Non-Simple Rational Function)

Consider the rational function F(x, y) = 1/(`1`2`3), where

`1(x, y) = 1 −
2x + y

3
and `2(x, y) = 1 −

3x + y

4

are the same as our running example, and

`3(x, y) = 1 −
x + y

2
.

As the three lines defined by `1, `2, and `3 meet at the point (x, y) = (1, 1), these
functions are linearly dependent. Figure 8.10 shows the arrangement of critical points
for three different directions r = (p, q). When 0 < p/q < 1 or 3 < p/q then F(x, y)
admits a smooth minimal critical point and we do not need to worry about the linear
dependency to determine dominant asymptotics. However, if 1 < p/q < 3 then the
only minimal critical point is the point (1, 1) where the three lines defined by the `j
intersect. Comparing coefficients in the equation a`1 + b`2 − `3 = 0, where a and b
are unknown constants, gives a linear system whose solution (a, b) = (3,−2) implies
`3 = 3`1 − 2`2, so

1 =
3`1
`3
−

2`2
`3
,

and thus
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F(x, y) =
3`1
`3
−

2`2
`3

`1`2`3
=

3
`2`

2
3
−

2
`1`

2
3
.

Finding coefficient asymptotics of F(x, y) in the direction r = (p, q) is therefore
reduced to finding asymptotics of the two summands in this expression, both ofwhich
are simple rational functions whose asymptotics are determined by Theorem 8.2 and
Algorithm 4. If 1 < p/q < 2 then

[xpnyqn]
1
`2`

2
3
∼ 4(3q − p)n and [xpnyqn]

1
`1`

2
3
∼ 12(q − p)n,

so
[xpnyqn]F(x, y) ∼ 12(p − q)n.

The coefficients of 1/`2`2
3 have the same behaviour when 2 < p/q < 3, but the

coefficients of 1/`1`2
3 decay exponentially in this case, meaning

[xpnyqn]F(x, y) ∼ 12(3q − p)n

when 2 < p/q < 3. Any direction where p/q = 2 is a non-generic direction
for 1/`1`2

3 , and will require the methods of Section 8.3 below.

To show that any rational function of interest can be decomposed into a sum of
simple functions, we need to introduce some notation. The following terminology is
borrowed from the theory of matroids.

Definition 8.12 (supports, broken circuits, and χ-independence) The support of
a rational function

F(z) = G(z)
`1(z)q1 · · · `m(z)qm

written with coprime numerator G and linear denominator factors `j is

sup (F) =
{
`j(z) : qj > 0

}
.

A minimal linearly dependent set of factors {`k1, . . . , `ks } is called a circuit; note
that any proper subset of a circuit is linearly independent. A broken circuit is the
independent set obtained by removing the element of largest index from a circuit.
A collection of the linear factors is χ-independent if it does not contain a broken
circuit.

Any dependent set contains a broken circuit, so a χ-independent set is also in-
dependent. In our last example the only dependent set is {`1, `2, `3}, so the unique
broken circuit is {`1, `2}. The χ-independent sets are then {`1, `3} and {`2, `3} to-
gether with the sets containing a single linear factor (but the independent set {`1, `2}
is not χ-independent). In our example we decomposed F(x, y) into a sum of simple
rational functions whose supports were precisely the χ-independent sets of size two.
The following result shows that such a decomposition is always possible.
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Algorithm 5: SimpleDecomp
Input: Rational function F(z) = G(z)/

∏m
j=1 `j (z)q j

Output: Collection F1(z), . . . , Fr (z) of rational functions with sup(Fj ) ⊂ sup(F) such
that F = F1 + · · · + Fr and each Fj has independent support

Set S ← F(z)
while there exists summand F̃ of S with broken circuit {`j1, . . . , `js−1 } in its support do

apply (8.38) to F̃ with js > js−1 such that {`j1, . . . , `js } is dependent
replace F̃ by the result of the previous step in the sum S

end

Proposition 8.5 Let `1(z), . . . , `m(z) be any linear functions. Then the set of rational
functions

L =

{
1

`j1 (z) · · · `js (z)
: {`j1, . . . , `js } is χ-independent

}
is linearly independent over the complex numbers. Furthermore, the span of the
rational functions{

1
`j1 (z)p1 · · · `js (z)ps

: {`j1, . . . , `js } is χ-independent and
s∑

i=1
pj = M

}
over the complex numbers contains the inverses of all products of the `j with M (not
necessarily distinct) factors.

Proof Linear independence of the set L follows from well-known results in the
study of hyperplane arrangements [5, Thms. 3.43, 3.126, 5.89].

To prove the second conclusion, suppose 1/`q is a rational function whose sup-
port contains a broken circuit {`j1, . . . , `js−1 }, with the factors ordered by increas-
ing index. Then by the definition of a broken circuit there exists js > js−1 such
that {`j1, . . . , `js−1, `js } is linearly independent, and there exist constants aj such
that (8.37) holds. Equation (8.38) with j = s expresses 1/`q as a linear combination
of rational functions of the form 1/`q′, where each q′ is lexicographically smaller
than q. This process can be repeated on each summand that still contains a bro-
ken circuit, continuing until no factor contains a broken circuit. The iteration must
terminate as each step yields rational functions whose denominator exponents are
lexicographically smaller than the previous step. �

Algorithm 5 implements our proof.
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8.3 Asymptotics in Non-Generic Directions

In this section we discuss asymptotics in non-generic directions, under the assump-
tion that F is simple (if not F can be decomposed using Algorithm 5). To begin
we express the series coefficients of interest in terms of certain ‘negative-moment
Gaussian integrals’. Unfortunately, asymptotics of such integrals do not follow from
Proposition 5.3 in Chapter 5. We give asymptotics when the integrals to be approxi-
mated are one-dimensional.

Example 8.3 Continued (Residue Integrals in Non-Generic Directions)

Consider again the function

F(x, y) =
1(

1 − 2x+y
3

) (
1 − 3x+y

4

) .
The coefficient sequence

[xr1nyr2n]F(x, y) =
1
(2πi)2

∫
T

1(
1 − 2x+y

3

) (
1 − 3x+y

4

) dxdy
xr1n+1yr2n+1 (8.39)

is non-generic in any direction rwith r̂1 ∈ {2/3, 3/4}, where its asymptotic behaviour
can differ from what happens when 0 < r̂1 < 2/3 (exponential decay), 2/3 < r̂1 <
3/4 (the limit is the constant 12), or 3/4 < r̂1 < 1 (exponential decay, determined
by a different critical point).

To be precise, we fix the non-generic direction r = (2, 1). Since Proposition 8.1
above does not require r to be generic, if we again define

M =
(
b(1)
b(2)

)
=

(
2/3 1/3
3/4 1/4

)
and make the change of variables

(
x
y

)
=

(
1
1

)
− M

(
p
q

)
, the manipulations of Sec-

tion 8.2.2 still imply that

[x2nyn]F(x, y) =
12
(2πi)2

∫
(ε,ε)+iR2

ω̃ (8.40)

for any ε > 0 sufficiently small, where

ω̃ =
1
pq

dpdq
(1 + 3p − 4q)2n+1(1 − 9p + 8q)n+1 .

That we are in a non-generic direction is reflected in the fact that the critical pointsσ1
and σ1,2 are equal, and in the fact that the linear combination
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(−∇hr)(σ1,2) = 3 b(1) + 0 b(2) (8.41)

contains a zero coefficient. Theorem 8.1 no longer applies: because the coefficient
of b(2) in (8.41) is zero, adding the necessary Cauchy integrals over imaginary fibers
to (8.40) in order to reduce to a residue computation in p and q results in an error
which grows too quickly.

To see why we get into trouble, note that the exponential growth of ω̃ with respect
to n is captured by the modified height function

h̃(p, q) = −2 log(1 + 3p − 4q) − log(1 − 9p + 8q),

which satisfies (∇h̃)(0, 0) = (3, 0). Thus, for ε > 0 sufficiently small h̃(−ε, ε) is less
than h̃(0, 0) = 0, meaning we can add the Cauchy integral over the imaginary fiber
with basepoint (−ε, ε) and introduce only a negligible error. In particular, there exists
τ ∈ (0, 1) such that

[x2nyn]F(x, y) =
12
(2πi)2

[∫
(ε,ε)+iR2

ω̃ −

∫
(−ε,ε)+iR2

ω̃

]
+O(τn).

Unfortunately, since the second coordinate of (∇h̃)(0, 0) is zero this argument does
not allow us to show h̃(ε,−ε) is less than 0 (which is, in fact, not true). We can
therefore take a residue in the p variable, but attempting to take a residue in the q
variable would introduce an error growing faster than the sequence of interest. Taking
a residue in the p variable gives

[x2nyn]F(x, y) =
6
πi

∫
ε+iR

1
q

1
(1 − 4q)2n+1(1 + 8q)n+1 dq +O(τn)

=
6
πi

∫
ε+iR

1
q(1 − 4q)(1 + 8q)

e−n[2 log(1−4q)+log(1+8q)]dq +O(τn).

Making the substitution y = iq then yields

[x2nyn]F(x, y) =
−6
πi

∫
R+iε

A(y)
y

e−nφ(y)dy +O(τn), (8.42)

where

A(y) =
1

(1 − 4iy)(1 + 8iy)
, φ(y) = 2 log(1 − 4iy) + log(1 + 8iy).

The integral in (8.42) would be a standard saddle-point integral, with an asymptotic
expansion determined by Proposition 5.3 of Chapter 5, if the factor of y was not
present in the denominator of the integrand. In generic directions, when there is
a contributing point determining asymptotics which is a root of k of the linear
denominator factors we are able to take k successive residues. The existence of the
pathological denominator term in (8.42) is a reflection of the fact that σ1 lies on the
zero set of two linear factors, but we are only able to take one residue.
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The general argument is similar to this example. First, we must extend our defi-
nition of contributing points to account for non-generic directions.

Definition 8.13 (general contributing points) A point w ∈ Vk1,...,kt is now called
contributing when

(−∇h)(w) =
t∑

j=1
ajb(k j ) (8.43)

and each aj is non-negative (in generic directions each aj will be strictly positive).

Fix a direction r and suppose that F admits a unique contributing singularity σ
of highest height, which lies in some flat V1,...,t and no proper subflat. If r is not
generic but each coefficient in (8.43) is positive (i.e., if r is not generic because
of a contributing point of lower height) then the arguments of Section 8.2 still
provide dominant asymptotic behaviour by analyzing the saddle-point integral Iσ
corresponding to σ. Thus, we may assume

(−∇h)(σ) = a1b(1) + · · · + atb(s) + 0 b(s+1) + · · · + 0 b(t)

for some s < t and aj > 0. Recall thematrix M with rowsb(1), . . . , b(t), e(t+1), . . . , e(d),
where we assume that the variables and `j have been permuted so that M has full
rank, and let

G̃(z) = G(z)
z1 · · · zd

∏
j>s `j(z)p j

.

For any integer κ > 0 let 0κ denote the zero vector of length κ. The following result
shows that, as in our example, the coefficients of interest are given by an integral of
the same form as the generic case, except for an extra monomial in the denominator
of the integrand which makes the integrand singular at the origin.
Proposition 8.6 Under the assumptions of the previous paragraph,

[znr]F(z) = np1+···+ps−s ips+1+···+pt

| det M |(2π)d−s

∫
Rd−s+iε(1t−s ,0)

R(y)
(
σ + iM−1

(
0
y

))−nr

y
ps+1
1 · · · y

pt
t−s

dy
(
1 +O

(
1
n

) )
,

where y = (y1, . . . , yd−s) and

R(y) =
s∏
j=1

vj(w)p j−1

(pj − 1)!
G̃

(
σ − M−1w

)������ wj=0, 1≤ j≤s
wj=−iyj−s, s+1≤ j≤d

for v(w) =
(

r1
σ1−(M−1w)1

· · ·
rd

σd−(M−1w)d

)
· M−1.

Proof Since σ is the unique contributing point of highest height, Proposition 8.1
implies that the coefficients of interest are given, up to an exponentially negligible
error term, by
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I =
1
(2πi)d

∫
σ−εm+iRd

G̃(z)
`1(z)p1 · · · `t (z)pt

dz
znr

for m = M−1 (
e(1) + · · · + e(t)

)
. Substituting w = M(σ − z) gives

I =
1

| det M |(2πi)d

∫
ε(1t,0)+iRd

G̃(σ − M−1w)
w

p1
1 · · ·w

pt
t

(
σ − M−1w

)nr dw. (8.44)

Because a1, . . . , as > 0 in (8.43) we can add or subtract the integrals obtained
by replacing the domain of integration in (8.44) by any of the 2s − 1 imaginary
fibers with basepoints (±1s, 1t−s, 0) , (1t, 0) and introduce only an exponentially
negligible error. Taking a signed sum of these integrals corresponds to taking the
residue of the integrand of I in w1, . . . ,ws at the origin. As in the previous sections
of this chapter, this residue is a polynomial of degree p1+ · · ·+ ps − s, whose leading
term after substituting yj = iwj+s for 1 ≤ j ≤ d − s becomes R(y). �

Determining asymptotics in a non-generic direction thus reduces to a study of
integrals of the form ∫

Rb+i(1a,0)

A(y)
ym1

1 · · · y
ma
a

e−nφ(y)dy

where m ∈ Na, a < b, and A and φ are analytic at the origin. Here we study the case
t = d and s = d − 1, where Proposition 8.6 reduces to a one-dimensional integral of
the form

ipd

| det M |(2π)

∫
R+iε

A(y)
yp1

e−nφ(y).

The following result states that A and φ can be replaced by the leading terms of their
power series expansions at the origin while introducing an error term which grows
slower than the sequence of interest.

Lemma 8.5 Let I =
∫
R+iε y

−k A(y)e−nφ(y) for some ε > 0 and r, k ∈ N. If

• A is a rational function with no zeroes in the strip R + (−2ε, 2ε)i ⊂ C;
• φ(y) is a finite sum of terms rj log(pj + iqj y) for real rj > 0 and pj, qj , 0;
• A(y) = a +O(y) and φ(y) = by2 +O(y3) at the origin, for some b > 0;
• φ′(y) = 0 only if y = 0,

then
I = a

∫
R+iε

y−ke−nby
2
dy + o

(
n−(k+1)/2

)
. (8.45)

Problem 8.4 asks you to prove Lemma 8.5, and Problem 8.5 asks you to determine
asymptotics for the integral in (8.45). Combining Proposition 8.6 and Lemma 8.5
then gives the following.

Theorem 8.3 Suppose F(z) is simple and r is a non-generic direction with a unique
contributing singularity σ of maximal height, lying on the flatV1,...,d . If
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−(∇hr)(σ) = a1 b(1) + · · · + ad−1 b(d−1) + 0 b(d)

with each aj > 0 then as n→∞

[znr]F(z) = σ−r np1+· · ·+pd−1+(pd+1)/2−d (C + o(1)) ,

where

C =
d−1∏
j=1

ap j−1
j

(pj − 1)!
G(σ)∏

j>d `j(σ)
p j

(qTq/2)(pd−1)/2

2(σ1 · · ·σd) | det M | Γ
(
pd+1

2

) ,
M is the matrix with rows b(1), . . . , b(d), and q is the rightmost column of the matrix

Q =

©«

√
r1/σ1 0 0 0
0
√

r2/σ2 0 0

0 0
. . . 0

0 0 0 √rd/σd

ª®®®®®¬
M−1.

In the simple pole case, when p = 1, the leading asymptotic term is half what it
would be if r was generic (i.e., if −(∇hr)(σ) was a positive linear combination
of b(1), . . . , b(d)).

Proof Under these hypotheses Proposition 8.6 implies the coefficients of interest are
determined up to a factor of 1 +O(1/n) by a univariate integral of the form

I = σ−r np1+· · ·+pd−d

∫
R+iε

A(y)
ypd

e−ψ(y)dy,

where rational A(y) and log-linear ψ(y) are analytic functions at the origin with

A(y) = G̃(σ)
d−1∏
j=1

((
r1
σ1
· · ·

rd
σd

)
· M−1

)p j−1

j
+ O(y) = G̃(σ)

d−1∏
j=1

ap j−1
j + O(y)

ψ(y) = log
©«
(
σ + iM−1

(
0
y

))r

σr

ª®®®®¬
= (qTq/2)y2 +O(y3).

Lemma 8.5 implies we can replace A and ψ by their leading asymptotics terms, and
Problem 8.5 provides asymptotics of the resulting integral. �

Example 8.3 Continued (Asymptotics in Non-Generic Directions)

Above we reduced coefficient asymptotics of
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b

0 a

12

6

6

3a(a+b)a+b
4a+baabb

n n−1/2 9(a+b)3/2√
2abπ(a−3b)

2a(a+b)a+b
3a+baabb

n n−1/2 4
√
2(a+b)3/2√
abπ(2b−a)

Fig. 8.11 The three asymptotic regimes for the coefficient asymptotics [xanybn]F(x, y) of
F(x, y) = 1

/(
1 − 2x+y

3

) (
1 − 3x+y

4

)
, with asymptotics in the non-generic directions filled in.

F(x, y) =
1(

1 − 2x+y
3

) (
1 − 3x+y

4

)
in the direction r = (2, 1) to (8.42). Replacing the analytic functions in this integral
by their leading terms gives

[x2nyn]F(x, y) =
−6
πi

∫
R+iε

e−48ny2

y
dt

(
1 +O

(
1
n

))
= 6 +O

(
1
n

)
.

In the simple pole case, the fact that the leading asymptotic term in Theorem 8.3 is
half what it would be in the non-generic case was noted by Pemantle andWilson [6].
Additional information on asymptotics in non-generic directions, including results
on how asymptotics transition between different asymptotic regimes as r varies
around a non-generic direction, can be found in Baryshnikov et al. [1].

Problems

8.1 Which of the plots in Figure 8.12 contains contributing singularities that could
actually arise in an analysis of a multivariate rational function whose denominator
is the product of real linear factors?

8.2 Consider the Laurent expansion of the rational function



348 8 Beyond Smooth Points: Poles on a Hyperplane Arrangement

Fig. 8.12 Ahyperplane arrangementwith three potential arrangements of contributing singularities;
not all of these arrangements can actually arise.

F(x, y) =
1(

1 − 2x+y
3

) (
1 − 3x+y

4

)
defined by

fi, j =
1
(2πi)2

∫
|x |=1/5, |y |=3

F(x, y)
dxdy

xi+1y j+1 .

Show that this Cauchy integral can be expressed as a signed sum of Cauchy inte-
grals over the imaginary fibers with basepoints (±1/5,±3). If r is a direction with
positive coordinates, express the coefficients of interest as a sum of Cauchy integrals
over linking tori and imaginary fibers in unbounded components ofMR; determine
asymptotics in the direction r. Determine asymptotics in directions r with poten-
tially negative coordinates (note that Cauchy integrals over imaginary fibers with
basepoints in unbounded regions ofMR may no longer be zero).

8.3 Let F(z) be a simple rational function and fix both r ∈ Rd
>0 and a convergent

Laurent expansion F(z) =
∑

i∈Zd fizi in an open domain containing a point x ∈ Rd .
Prove that the Cauchy integral expression

fnr =
1
(2πi)d

∫
T (x)

F(z)
znr+1 dz

can be decomposed as a sum of integrals over imaginary fibers. Deduce a generaliza-
tion of Theorem 8.1 for this situation. What changes if r has negative coordinates?

8.4 For n > 0 let An = (−n−2/5, n2/5) denote a shrinking real interval centred at the
origin and εn = 1/

√
n. Let A(y) and φ(y) be as in Lemma 8.5.

1. Prove that for any fixed κ > 0 the integral
∫
R\(−κ,κ)+iεn

y−k A(y)e−nφ(y)dy decays
faster than any fixed power of n as n→∞.
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2. Prove that
∫
R\An+iεn

y−k A(y)e−nφ(y)dy decays faster than any fixed power of n
by bounding |A(y)| and the real part of φ(y) for y near the origin using the
leading terms of their power series expansions at the origin.

3. Prove that
∫
An+iεn

���y−k A(y)e−nφ(y) − ay−ke−bny
2
��� dy = O

(
n−(k+1)/2−1/5) .

4. Prove that
∫
R\An+iεn

y−ke−ny
2
dy decays faster than any fixed power of n.

5. Conclude that Lemma 8.5 holds.

8.5 For any κ ∈ N and b > 0 define the integral

Iκ(b) =
∫
R+iε

e−bt
2

tκ
dt.

By differentiating under the integral sign, show that Iκ satisfies the recursion Iκ(b) =
−

∫
Iκ−2(b) db for all κ ≥ 2. After finding I0(b) and I1(b), prove that

Iκ(b) =
(−i)κb(κ−1)/2π

Γ

(
κ+1

2

) ,

where Γ(z) is the Euler gamma function.

8.6 Determine asymptotics of the bivariate generating function

F(x, y) =
1

(1 − ρ1,1x − ρ2,1y)(1 − ρ1,2x − ρ2,2y)

for a closed multiclass queuing network with no infinite servers. How does the
asymptotic behaviour depend on the weights ρi, j > 0? For what values of the
weights are all directions r ∈ R2

>0 generic?

8.7 Let A be an m × n matrix and B be a n × m matrix, and let In and Im denote
the n × n and m × m identity matrices, respectively. Prove Sylvester’s determinant
identity, which states that det(In + BA) = det(Im + AB), then show det(zIn + BA) =
zn−m det(zIm+ AB).Hint: If 0n×m is the n×m zero matrix, direct calculation implies(

Im −A
B In

) (
Im A

0n×m In

)
=

(
Im A

0n×m In

) (
Im −A
B In

)
.

8.8 Let C be an n × n matrix and for any 1 ≤ k ≤ n let Sk denote the collection of k
element subsets of {1, . . . , n}. Prove that for any 1 ≤ k ≤ n the coefficient of zn−k in
det(zIn + C) equals ∑

S∈Sk

det
(
CS,S

)
,

where CS,S denotes the k × k submatrix of C consisting of its rows and columns with
indices in S.
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8.9 Let A be an m × n matrix and B be a n×m matrix, where n ≥ m. Use the results
of Problems 8.7 and 8.8 to prove the Cauchy-Binet formula:

det(AB) =
∑
S∈Sm

det
(
AS,[m]

)
det

(
B[m],S

)
,

where [m] = {1, . . . ,m} and for any matrix M the notation MP,Q refers to the sub-
matrix of M whose rows have indices in the set P and whose columns have indices
in the set Q.
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Chapter 9
Multiple Points and Beyond

Only geometry can give us the thread which will lead us through
the labyrinth of the continuum’s composition, the maximum and
the minimum, the infinitesimal and the infinite, and no one will
arrive at a solid metaphysic except he who has passed through it.
— Gottfried Wilhelm von Leibniz

In this chapter we detail more general aspects of ACSV. To begin, we combine
techniques from Chapter 5 (ACSV in the smooth case) and Chapter 8 (ACSV when
the singular set is a hyperplane arrangement) to study functions whose singular
sets are locally hyperplane arrangements; asymptotics are determined through the
use of multivariate residues, leading to Theorems 9.1 and 9.2. Following this we
survey current aspects of ACSV, including new work making use of tools from
topology, leading up to Theorem 9.3 on the asymptotic contributions of (poten-
tially non-minimal) critical points. Combining these topological methods with the
computational results for D-finite functions discussed in Chapter 2 gives a powerful
approach to the connection problem for asymptotics of sequences satisfying linear
recurrence relations with polynomial coefficients.

9.1 Local Geometry of Algebraic and Analytic Varieties

Before studying rational (and meromorphic) generating functions with more compli-
cated singular varieties, we need a better understanding of the ‘local’ geometry that
can arise. In order to talk about local geometry, we introduce the following notion.

Definition 9.1 (local rings)Givenw ∈ Cd the local ring atw, denotedOw, is the ring
of power series which converge in some neighbourhood of w with the usual addition
and multiplication. Equivalently, the local ring is given by complex functions f (z)
which are analytic at w, modulo the equivalence relation f ∼ g if f = g on some
neighbourhood of w. An element f ∈ Ow is a unit if it does not vanish at w (so 1/ f is
also in Ow) and irreducible if f = gh implies one of g or h is a unit. Two irreducible
elements f , g ∈ Ow are coprime if there does not exist a unit u ∈ Ow with f = ug.

Hörmander [17, Thm. 6.2.2] shows that for any w ∈ Cd the local ring Ow forms a
unique factorization domain, meaning any element of Ow can be written as a product
of irreducible elements and this representation is unique up to the ordering of factors
and multiplication by units.

351
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Remark 9.1 If f (z) = g(z)h(z) for analytic functions g and h which vanish at w
then the product rule implies any partial derivative of f vanishes at w. Thus, a
sufficient (but not necessary) condition for an element of Ow represented by the
analytic function f (z) to be irreducible is that the gradient (∇ f )(w) is non-zero.

Suppose we want to determine coefficient asymptotics of a rational function
F(z) = G(z)/H(z). The most explicit results in this chapter will hold when the de-
nominator H(z) locally factors into irreducibles whose zero sets have nice geometry.

Definition 9.2 (factorizations and multiple points) Let w ∈ Cd and H(z) be an
analytic function at w. We call an expression of the form

H(z) = u(z)H1(z)p1 · · ·Hs(z)ps (9.1)

a factorization of H in Ow if u and the Hj are analytic in some polydisk D centred
at w, each pj is a positive integer, and (9.1) holds for all z ∈ D. By convention,
when writing a factorization of the form (9.1) we always assume that u(w) , 0 while
each Hj(w) = 0. If the Hj(z) are irreducible in Ow and pairwise coprime then (9.1) is
called a square-free factorization of H in Ow. When H has a square-free factorization
in Ow with each exponent pj = 1 then H is said to be square-free at w.

We call w a multiple point of H if H has a factorization in Ow of the form (9.1)
where the gradient vectors (∇H1)(w), . . . , (∇Hs)(w) are all non-zero. If, in addition,
the gradient vectors (∇H1)(w), . . . , (∇Hs)(w) are linearly-independent then w is
called a transverse (multiple) point.

Remark 9.2 Recall from previous chapters that the zero set of a complex-valued
function f is denotedV( f ), that the square-free part of a polynomial H(z) ∈ C[z],
denoted Hs(z), is the product of its distinct irreducible factors, and that the smooth
points of V(H) are the points where the gradient (∇Hs)(z) is non-zero. Checking
definitions shows that any smooth point ofV(H) is a transverse point.

Remark 9.3 Given an open set U ⊂ Cd and analytic function f (z) on U, let VU ( f )
denote the elements z ∈ U such that f (z) = 0. If (9.1) gives a factorization of H(z)
in Ow then there exists some neighbourhood U of w in Cd such that H,H1, . . . ,Hs

are analytic on U and

VU (H) = VU (H1) ∪ · · · ∪ VU (Hs).

Thus, if w is a multiple point of H(z) then the points of V(H) contained in some
neighbourhood ofw form a finite union of smooth sets, each defined by the vanishing
of a single analytic function. If w is a transverse point then the tangent spaces of
these smooth sets at w are hyperplanes with linearly independent normal vectors.

Example 9.1 (Multiple Points in an Algebraic Set)

Suppose H(x, y) = H1(x, y)H2(x, y) where H1 = 1− x2 + y and H2 = 1− x2 − y2, so
thatV = V(H) is the union of the two irreducible algebraic varietiesV1 = V(H1)
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Fig. 9.1 Left: The real points in the zero set V((1 − x2 + y)(1 − x2 − y2)) = V(1 − x2 + y) ∪
V(1 − x2 − y2) form the union of a circle and a parabola, which have two transverse points
of intersection (on the sides of the circle) and one non-transverse point of intersection (at the
bottom of the circle). The transverse points of intersection move smoothly if the parabola or circle
are perturbed, but the non-transverse point can disappear or split into two points of intersection
when the parabola or circle are perturbed. Right: The real points in the zero set of H(x, y) =
(1/3 − x)2(1/2 − y)2 + (5/6 − x − y)(11/6 − 4x − y) form a figure-eight pattern.

and V2 = V(H2); see the left of Figure 9.1. Any element of V in either V1 or V2
but not both is a smooth point, and thus a transverse point. Solving the system

H(x, y) = Hx(x, y) = Hy(x, y) = 0

gives the three points V1 ∩ V2 = {(−1, 0), (0,−1), (1, 0)} where V is non-smooth.
The gradients ∇H1 and ∇H2 never vanish on V1 and V2, respectively, so all three
points in V1 ∩ V2 are multiple points. The gradients (∇H1)(x, y) and (∇H2)(x, y)
are linearly independent when (x, y) = (−1, 0) and (x, y) = (1, 0), which are thus
transverse points, but these gradients are linearly dependent at (x, y) = (0,−1), which
is not a transverse point.

Note that the transverse points vary smoothly with the coefficients of H under
small perturbations. On the other hand, by slightly perturbing coefficients it is pos-
sible to remove the non-transverse multiple point or have it split into two points
of intersection. This gives a geometric interpretation of transverse points: they are
the multiple points arising from intersections of smooth sets which are stable under
small coefficient changes.

Non-Example 9.2 (Non-Multiple Points)

Consider the polynomial H(x, y, z) = z2 − x2 − y2. Problem 9.1 asks you to show
that H is irreducible in the local ring O0, but the gradient of H vanishes at the origin.
The zero setV(H) is not smooth at the origin; its real points form the union of two
cones joined to make an hourglass shape.



354 9 Multiple Points and Beyond

In practice, when H(z) is a polynomial it often factors into irreducible polynomials
whose zero sets behave nicely.

Remark 9.4 Suppose H(z) ∈ C[z] has a factorization H(z) = H1(z)p1 · · ·Hm(z)pm

in C[z], where each pj is a positive integer. Further assume that

(1) whenever Hj(w) = 0 for some w ∈ Cd then (∇Hj)(w) is not the zero vector,
(2) if w ∈ Cd is a common root of some factors Hk1 (w) = · · · = Hks (w) = 0 then

the vectors (∇Hk1 )(w), . . . , (∇Hks )(w) are linearly independent.

Then every point in the zero set V = V(H) is a transverse point of H. If only
condition (1) holds then every point in V is a multiple point, but some are not
transverse points. If Hk1, . . . ,Hks are the factors of H which vanish at w ∈ V then
the factorization

H(z) = ©«
∏

j<{k1,...,ks }

Hj(z)p j
ª®¬︸                    ︷︷                    ︸

u(z)

Hk1 (z)pk1 · · ·Hks (z)pks

gives a square-free factorization of H in Ow.

Definition 9.3 (transverse polynomial factorization) A factorization H(z) =
H1(z)p1 · · ·Hm(z)pm in C[z] satisfying properties (1) and (2) of Remark 9.4 is called
a transverse polynomial factorization of H(z).

Example 9.3 (A Quadrant Lattice Path Model)

If A = {(−1, 1), (0,−1), (1, 1)} then Theorem 4.2 in Chapter 4 implies that the
generating function for the number of walks in N2 which begin at the origin and use
the steps in A is the main diagonal of the rational function

F(x, y, t) =
(1 + x)(1 − xy2 + x2)

(1 − t(1 + x2 + xy2))(1 − y)(1 + x2)
.

The denominator H(x, y, t) of F(x, y, t) is the product of the polynomials

H1 = 1 − t(1 + x2 + xy2), H2 = 1 − y, H3 = 1 + x2.

When H1(x, y, t) = 0 the derivative −∂H1/∂t = 1 + x2 + xy2 = 1/t , 0, so the
gradients of H1,H2, and H3 do not vanish on V(H1),V(H2), and V(H3), respec-
tively. Since the gradients of these polynomials are linearly independent at common
intersections of their zero sets, the decomposition H = H1H2H3 is a transverse
polynomial factorization of H.



9.1 Local Geometry of Algebraic and Analytic Varieties 355

Not every polynomial has a transverse polynomial factorization. In fact, it is
possible for a polynomial H(z) to be irreducible as a complex polynomial but still
factor in the local ring at a point. This is one reason why it is important to discuss
local rings, even if one only cares about the zero sets of polynomials.

Example 9.4 (A Lemniscate)

Historically significant examples of irreducible plane curves, which will allow for
a nice illustration of our theory, are figure-eight shapes known as lemniscates1. For
instance, the real zeroes of the polynomial

L(x, y) =
(
1
3
− x

)2 (
1
2
− y

)2
+

(
5
6
− x − y

) (
11
6
− 4x − y

)
are displayed on the right-hand side of Figure 9.1. Using the quadratic formula it
is easy to see that L(x, y) does not factor into linear factors. Solving the system
L = Lx = Ly = 0 shows that % = (1/3, 1/2) is the only non-smooth point ofV(L).
Near % the zero setV(H) is the union of two zero setsV(y − a1(x)) ∪V(y − a2(x))
where a1(x) and a2(x) are analytic at x = 1/3 with convergent series expansions

a1(x) = 1/2 − (x − 1/3) − (1/3)(x − 1/3)3 − (7/27)(x − 1/3)5 + · · ·

a2(x) = 1/2 − 4(x − 1/3) + (16/3)(x − 1/3)3 − (128/27)(x − 1/3)5 + · · · .

Since L is quadratic in y we can determine a1(x) and a2(x) using the quadratic
formula, but finding such expansions can be done for any bivariate function using
the Newton polygon method discussed in Section 2.3 of Chapter 2. Because the
gradients of y− a1(x) and y− a2(x) are linearly independent at %, this is a transverse
point. The algorithms of Chapter 7 automatically prove that % is minimal.

We conclude this introductory section by giving a necessary condition formultiple
points. Stating this condition requires the following concept.

Definition 9.4 (leading homogeneous terms) Given w ∈ Cd and H(z) analytic
at w, the leading homogeneous term of H at w is the sum of the lowest-degree terms
appearing in the power series expansion of H(w + z) at the origin.

If H(w) , 0 then the leading homogeneous term of H at w is the constant H(w).

Example 9.4 Continued (Lemniscate Leading Homogeneous Term)

If L(x, y) is the lemniscate from above then L(1/3+x, 1/2+y) = 4x2+5xy+y2+x2y2

so the leading homogeneous term of L at the non-smooth point (1/3, 1/2) equals

1 The term lemniscate was coined by Jakob Bernoulli from a Greek word ληµνισκoς (lemniskos)
for ribbon; see Schappacher [29] for additional historical context. Our example L(x, y) is obtained
from the simple polynomial x2y2+(x+y)(4x+y) aftermaking the (somewhat arbitrary) substitution
(x, y) 7→ (1/3 − x, 1/2 − y) so that 1/L(x, y) has a power series expansion at the origin.
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`(x, y) = 4x2 + 5xy + y2 = (x + y)(4x + y).

Lemma 9.1 Let w ∈ Cd and H(z) be analytic at w with H(w) = 0. Let `(z) be the
leading homogeneous term of H(z) at w. If w is a multiple point of H then ` factors
into linear polynomials.

Proof We know that H(z) has a factorization in Ow of the form (9.1), which implies
`(z) = `1(z)p1 · · · `s(z)ps where `j is the leading homogeneous term of Hj at w.
When w is a multiple point then each `j is linear. �

Example 9.5 (Applying Lemma 9.1)

The leading homogeneous term of H(x, y, z) = w2− x2− y2− z2 at the origin is itself,
which does not factor into linear polynomials, so Lemma 9.1 implies the origin is
not a multiple point of H.

With this knowledge of local geometry in hand, we now turn back to analytic
combinatorics in several variables.

9.2 ACSV for Transverse Points

In this section we generalize our previous ACSV methods to cover multivariate
functions whose coefficient asymptotics are determined by transverse points. For
simplicity we introduce most of our constructions and results for power series ex-
pansions of rational functions, noting afterwards how they vary for general Laurent
expansions of meromorphic functions.

To that end, let F(z) = G(z)/H(z) be the ratio of coprime polynomials
G(z),H(z) ∈ C[z] with power series expansion F(z) =

∑
i∈Nd fizi on the domain of

convergenceD ⊂ Cd . Recall that because G and H are coprime, the setV = H(H)
forms the singular variety of F (its set of singularities). As in previous chapters, our
analysis in a direction r ∈ Rd∗ begins with a multivariate Cauchy integral

fnr = [znr]F(z) = 1
(2πi)d

∫
T

F(z) dz
znr+1 , (9.2)

where T is any product of circles in the domain of convergence D. Once again the
growth of the Cauchy integrand in (9.2) is captured by the height function

hr(z) = h(z) = −
d∑
j=1

rj log |zj |,
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which gives a bound on the exponential growth

lim sup
n→∞

| fnr |
1/n ≤ ehr(w)

for every w ∈ D, and in particular for every minimal point w ∈ V ∩ ∂D (this
bound is established through the same process as (5.15) in Chapter 5). Following the
approach of Chapter 5, the first step in our asymptotic analysis is to determine the
singularities where this upper bound could be tight.

9.2.1 Critical Points and Stratifications

In Chapter 5 we introduced the smooth critical point equations (5.16) to characterize
potential minimizers of the height function h(z) onV∩ ∂D. Unfortunately, as noted
in Chapter 8, any non-smooth point ofV trivially satisfies the smooth critical point
equations, so these equations are too weak to properly characterize non-smooth
points of interest. In Chapter 8, when the singular varietyV was assumed to form a
hyperplane arrangement, we decomposedV into the union of smooth sets and used
the geometry ofV to create a new set of ‘hyperplane’ critical point equations (8.2).
Now that we have a better understanding of local geometry, we can generalize the
setup of Chapter 8. Recall the logarithmic gradient map ∇log f = (z1 fz1, . . . , zd fzd )
from previous chapters, where fz j denotes the partial derivative ∂ f /∂zj .

Definition 9.5 (critical points)Letw ∈ Cd∗ and H(z) be analytic atw. Fix a direction
r ∈ Rd∗ and suppose w is a transverse point where H(z) = u(z)H1(z)p1 · · ·Hs(z)ps is
a square-free factorization of H in Ow. If the number of factors s < d then w is a
critical point in the direction r if the (s + 1) × d matrix

Nw(H1, . . . ,Hs) =

©«
−(∇logH1)(w)

...
−(∇logHs)(w)

r

ª®®®®¬
(9.3)

is rank deficient, meaning all (s + 1) × (s + 1) minors of Nw vanish. If s = d then w
is always called a critical point in the direction r. Since w is a transverse point, it
cannot be the case that s > d.

Definition 9.5 generalizes Definition 5.4 in Chapter 5, for critical points in the
smooth case, and Definition 8.3 of Chapter 8, for critical points in the hyperplane
arrangement setting.

Remark 9.5 Suppose w is a transverse point of H with square-free factoriza-
tion as in Definition 9.5. Then the leading homogeneous term of H(z) at w is
u(w)`1(z)p1 · · · `s(z)ps , where `j(z) is the (linear) leading homogeneous termofHj(z)
at w. In particular, the gradients (∇Hj)(w) can be determined implicitly from the
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evaluations of the partial derivatives of H(z) at z = w by computing a power series
expansion of H(z) at z = w and factoring the leading homogeneous term. When
H(z) ∈ Q[z] then all critical points have algebraic coordinates and the evaluations of
the partial derivatives of H and factorization of its leading homogeneous term can
be done implicitly [19].

Definition 9.5 characterizes when a specific point is critical. In order to determine
a procedure to compute all critical points, we decompose the singular variety V
into a finite collection of smooth sets such that each smooth set has consistent local
geometry. The easiest case occurs when H(z) admits a transverse polynomial factor-
ization. The following generalizes Definition 8.1 in Chapter 8 from the hyperplane
arrangement setting to this context.

Definition 9.6 (flats and strata) Suppose H(z) admits a transverse polynomial fac-
torization H(z) = H1(z)p1 · · ·Hm(z)pm . For any S = {k1, . . . , ks} ⊂ {1, . . . ,m} the
flat defined by Hk1, . . . ,Hks is the set VS = Vk1,...,ks = V(Hk1, . . . ,Hks ) of their
common solutions in Cd . The stratum defined by S is the flat VS minus any other
flats it strictly contains,

SS = VS \
⋃
VT (VS

VT .

The dimension of the flatVS , and of the stratum SS , is the value of d − |S |.

Remark 9.6 Because we restrict to transverse polynomial factorizations there are no
non-empty flats defined by subsets S of size |S | > d, meaning the dimension of any
non-empty flat is a natural number. Any zero-dimensional flat, defined by a subset S
with |S | = d, is a finite set. Further properties of the dimension of algebraic sets,
including the general definition of dimension, can be found in Mumford [24, Ch. 1].

The singular varietyV is the (finite and disjoint) union of the strata SS as S runs
over the subsets of {1, . . . ,m}. The critical points on a stratum can be characterized
by one set of algebraic equations.

Definition 9.7 (transverse critical points equations) Suppose H(z) admits a trans-
verse polynomial factorization H(z) = H1(z)p1 · · ·Hm(z)pm and fix a direction
r ∈ Rd∗ . For any S = {k1, . . . , ks} ⊂ {1, . . . ,m} let Nz(Hk1, . . . ,Hks ) denote the
matrix in (9.3). The system of polynomial equalities and inequalities

Hk j (z) = 0, j = 1, . . . , s

det(M) = 0, M is an (s + 1) × (s + 1) minor of Nz(Hk1, . . . ,Hks )

zj , 0, j = 1, . . . , d

Hi(z) , 0, i ∈ {1, . . . ,m} \ {k1, . . . , ks}

(9.4)

form the critical point equations for the stratum SS in the direction r.

If H(z) admits a transverse polynomial factorization then the solutions of the critical
point equations over all strata of V give all critical points. We discuss notions of
critical points beyond transverse points in Section 9.3 below.
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Remark 9.7 (an optional perspective from differential geometry) Fix a stratum S and
let S∗ denote the submanifold of points in S whose coordinates are non-zero. As in
Remark 5.9 of Chapter 5, we may view the height function h as a smooth map of
manifolds from S∗ to R. Then the ‘critical points’ in the usual sense of differential
geometry (points where the differential of h restricted to S∗ vanishes) match our
definition of critical points. See Section 9.3 below for more details.

Example 9.3 Continued (Lattice Path Critical Points)

Consider again the lattice path model in N2 defined by the set of steps A =
{(−1, 1), (0,−1), (1, 1)}. As noted above, the generating function of this model is
the main diagonal of a rational function whose denominator has a transverse polyno-
mial factorization with factors H1 = 1− t(1+ x2+ xy2),H2 = 1− y, and H3 = 1+ x2.
To determine critical points in the r = (1, 1, 1) direction

• on the stratum S1, we build the matrix

N =
(
−∇logH1

1

)
=

(
t x(y2 + 2x) 2t xy2 t(1 + x2 + xy2)

1 1 1

)
and determine the points in S1 where H1 and the maximal minors of N vanish.
This recovers the smooth critical point equations from Chapter 5,

H1 = 0, x(∂H1/∂x) = y(∂H1/∂y) = t(∂H1/∂t),

subject to the condition (1 − y)(1 + x2) , 0. There are four solutions, given by
(ω2, ω

√
2, 1/4) for ω ∈ {±1,±i}, which are all smooth critical points. None of

these critical points are minimal, as they have y-coordinate of modulus
√

2 and
the denominator of F(x, y, t) contains H2 = 1 − y as a factor.

• on the stratum S1,2, we compute the matrix

N = ©«
−∇logH1
−∇logH2

1

ª®¬ = ©«
t x(y2 + 2x) 2t xy2 t(1 + x2 + xy2)

0 y 0
1 1 1

ª®¬
and solve H1 = H2 = det N = 0 subject to 1 + x2 , 0. This gives two critical
points, σ = (1, 1, 1/3) and (−1, 1, 1), of which the second is not minimal since it
has larger coordinate-wise modulus than σ.

• on the stratum S1,3, we compute the matrix

N = ©«
−∇logH1
−∇logH3

1

ª®¬ = ©«
t x(y2 + 2x) 2t xy2 t(1 + x2 + xy2)

−2x 0 0
1 1 1

ª®¬
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and solve H1 = H3 = det N = 0 subject to 1 − y , 0. This system of equations
has no solutions, so S1,3 contains no critical points.

• on the stratum S1,2,3, we note that both points (i, i,−i) and (−i,−i, i) in the stratum
are critical points by definition, but neither is minimal.

• on the strata S2,S3, and S2,3, we note that H2 = 1 − y and H3 = 1 + x2 are
independent of the variable t, so r = (1, 1, 1) can never be in the span of ∇logH2
and ∇logH3, and there are no critical points (alternatively one can compute matrix
minors as above to obtain systems with no solutions).

Problem 9.2 below asks the reader to prove that σ = (1, 1, 1/3) is a minimal point,
but σ is not strictly minimal since any point (x, 1, t) with |x | = 1 and |t | = 1/3 lies
inV(H) and has the same coordinate-wise modulus as σ.

As in previous chapters, not all critical points contribute to dominant asymptotics.
To find the critical points that will appear in our analysis we introduce the following
notion, generalizing Definition 5.5 in Chapter 5 and Definition 8.8 in Chapter 8.

Definition 9.8 (contributing points) Let w ∈ Cd∗ be a transverse point of H(z) and
let H(z) = u(z)H1(z)p1 · · ·Hs(z)ps be a square-free factorization of H in Ow. For
each 1 ≤ j ≤ s let k j ∈ {1, . . . , d} be an index such that the partial derivative
(∂Hj/∂zk j )(w) , 0. Proposition 3.6 in Chapter 3 implies the vector

vj =
(∇logHj)(w)

wk j (∂Hj/∂zk j )(w)
=

(
w1(∂Hj/∂z1)(w)
wk j (∂Hj/∂zk j )(w)

, . . . ,
wd(∂Hj/∂zd)(w)
wk j (∂Hj/∂zk j )(w)

)
has real coordinates. The normal cone of H at w is the set

N(w) =


s∑
j=1

ajvj : aj > 0
 ⊂ Rd .

The point w is called a contributing singularity, or contributing point, for the di-
rection r ∈ Rd∗ if r ∈ N(w). Since the gradients of the Hj(z) at z = w are linearly
independent the vectors vj are also linearly independent, thus if r = a1v1 + · · · asvs
then the aj are uniquely determined.

Remark 9.8 If w is a contributing point for the direction r then r is a non-trivial
linear combination of the logarithmic gradients (∇logHj)(w), so every contributing
point is critical. Furthermore, a check of the definitions shows that for the power
series expansion of rational F(z) any smooth minimal critical point is contributing
(as should be the case since Definition 9.8 generalizes Definition 5.5 of Chapter 5).

Example 9.3 Continued (Lattice Path Contributing Points)
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In our running lattice path example the denominator factors H1 = 1− t(1+ x2 + xy2)

and H2 = 1 − y which vanish at the minimal critical point σ = (1, 1, 1/3) have
logarithmic gradients (∇logH1)(σ) = −(1, 2/3, 1) and (∇logH2)(σ) = −(0, 1, 0). Thus,
the normal cone at σ is

N(σ) =
{
a

(
1,

2
3
, 1

)
+ b(0, 1, 0) : a, b > 0

}
.

Since (1, 1, 1) ∈ N(σ), we see that σ is a contributing point for the direction r = 1.

Example 9.6 (Another Quadrant Lattice Path Model)

If B = {(1,−1), (−1,−1), (0, 1)} then Theorem 4.2 in Chapter 4 implies that the
generating function for the number of walks in N2 which begin at the origin and use
the steps in B is the main diagonal of the rational function

F(x, y, t) =
(x − x2y2 − y2)(1 + x)

x(1 − t(x + y2 + x2y2))(1 − y)
.

Although we develop ACSV for general Laurent expansions, here we can stick to a
power series expansion by noting that the nth main diagonal coefficient of F(x, y, t)
is the (n + 1)st main diagonal coefficient of

E(x, y, t) = xytF(x, y, t) =
(x − x2y2 − y2)(1 + x)yt
(1 − t(x + y2 + x2y2))(1 − y)

. (9.5)

The denominator H(x, y, t) of E(x, y, t) has the transverse polynomial factoriza-
tion H = H1H2 where H1(x, y, t) = 1 − t(x + y2 + x2y2) and H2(x, y, t) = 1 − y.
Solving the critical point equations on each stratum shows that S1 = V(H1) \V(H2)

has four critical points in the main diagonal direction,

σω =

(
ω2,

ω
√

2
,
ω2

2

)
, ω ∈ {1,−1, i,−i},

which are finitely minimal points where the singular variety is smooth. The stratum
S2 = V(H2) \ V(H1) contains no critical points, but the stratum S1,2 = V(H1,H2)

contains two critical points: τ = (1, 1, 1/3), which is minimal, and (−1, 1, 1), which
is not minimal. Note, in particular, that τ and the σω are minimal critical points but
they do not all have the same coordinate-wisemodulus. Because we are considering a
power series expansion any smooth minimal critical point is contributing, so the σω
are all contributing points (the logarithmic gradient of H1 at each point is a non-zero
multiple of 1). Computing the logarithmic gradients of H1 and H2 at τ shows

N(τ) =
{
a

(
1,

4
3
, 1

)
+ b(0, 1, 0) : a, b > 0

}
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so (1, 1, 1) < N(τ) and τ is not a contributing point for r = 1.
Because there are finitely minimal smooth critical points, the non-smooth points

of E(x, y, t) in (9.5) are irrelevant. In particular, an asymptotic expansion for the
number wn of walks in N2 using the steps in B can be computed using Corollary 5.2
of Chapter 5. Adding the asymptotic contributions of each σω to the main diagonal
of E , then shifting the index of n by one to return to the diagonal of F, gives

wn =

(
2
√

2
)n

n2

(
An

π
+O

(
1
n

))
, An =

{
12
√

2 : n even
32 : n odd

.

Note that the numerator of E(x, y, t) vanishes at eachσω , so the second order term in
the expansion (5.27) must be calculated for each point, and that the leading constant
has a periodicity coming from the different contributions of the σω .

Minimal contributing points are important because, as in the smooth case, they
are minimizers of the height function on the closure of the domain of convergence.
The fastest way to see this is to recall the discussion of polynomial amoebas and the
Relog map from Section 3.3.1 in Chapter 3.

Proposition 9.1 Let w ∈ Cd∗ be a transverse point of H(z) ∈ C[z]. If w is a con-
tributing point of H for the direction r and w is minimal (i.e., w ∈ ∂D) then w is a
minimizer of the height function hr(z) on D.

Proof Let H(z) = u(z)H1(z)p1 · · ·Hs(z)ps be a square-free factorization of H in Ow
and let B = Relog(D) be the component of amoeba(H)c corresponding to the power
series expansion of F(z). Near Relog(w) the amoeba of H contains (at least) the
zeroes of the Hj(z) under the Relog map. Proposition 3.6 from Chapter 3 implies
that the vectors vj in Definition 9.8 are outward normals for support hyperplanes
of B at Relog(w) (where Remark 3.2 covers the case when the Hj are analytic at w
but not polynomials). Thus, as illustrated in Figure 9.2, any element of N(w) is the
outward normal to a support hyperplane of B at Relog(w). Since hr becomes the
linear function h̃(x) = −r · x after taking the Relog map, this implies Relog(w) is a
minimizer of h̃ on the convex set B, and thus w is a minimizer of hr on D. �

Example 9.3 Continued (Lemniscate Contributing Points)

Recall the lemniscate L(x, y) = (1/3− x)2(1/2− y)2 + (5/6− x − y)(11/6− 4x − y)
from above, whose zero setV(L) contains a single non-smooth point % = (1/3, 1/2).
We have seen that the leading homogeneous term of L at % factors as `(x, y) =
(x + y)(4x + y) and there is a factorization L = L1L2 in O% where

(∇logL1)(%) = (w1,w2) = (1/3, 1/2), (∇logL2)(%) = (4w1,w2) = (4/3, 1/2).

This gives a normal cone
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Fig. 9.2 Left: The amoeba of the polynomial L(x, y) with the component B ⊂ amoeba(L)c
corresponding to the power series expansion of 1/L(x, y) labelled. The image of the multiple point
% = (1/3, 1/2) under the Relog map, where ∂B has a cusp, is circled. Right: A portion of the
contour of L(x, y) with the normal cone N (%) displayed. The normals to the two smooth curves
making up the contour near Relog(%), which form the boundary of N (%), are the logarithmic
gradients of the factors of L in the local ring O% .

N(%) =
{
a

(
2
3
, 1

)
+ b

(
8
3
, 1

)
: a, b > 0

}
;

see Figure 9.2. The vector r ∈ R2
>0 lies in N(%) if and only if r1/r2 ∈ (2/3, 8/3),

which gives the directions where % is a contributing singularity. The rational function
1/L(x, y) also has smooth critical points, whose coordinates are degree six algebraic
functions in the coordinates of r ∈ Rd

>0. There will be aminimal smooth critical point
only when % is not contributing (otherwise, since % is strictly minimal, there would
be two minimal contributing points with different coordinate-wise moduli, which
cannot occur since the boundary of amoeba(L) does not contain a line segment).

Example 9.7 (Lattice Path Amoebas)

Visualizations of the amoebas of the lattice path models discussed above, together
with two-dimensional projections of the relevant critical points and logarithmic
gradients, are given in Figures 9.3 and 9.4.

We end this section by discussing general (non-power series) Laurent expansions.
The only concept above which does not immediately apply to general Laurent expan-
sions is Definition 9.8 for contributing points, but Proposition 3.13 from Chapter 3
allows for a natural extension.
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Fig. 9.3 Left: A portion of the amoeba contour for the denominator of the rational function
corresponding to the quadrant model with step set A, with the power series component B of the
amoeba complement shaded. Right: The projection of this plot onto the plane log(x) = 1, with the
projections of the critical points and logarithmic gradients displayed. The vector r = 1 is in the
normal cone at the minimal critical point, which is a transverse point. The smooth critical point is
not minimal, and does not lie on the boundary of B.

Fig. 9.4 Left: A portion of the amoeba contour for the denominator of the rational function
corresponding to the quadrant model with step set B, with the power series component of the
amoeba complement shaded. Right: The projection of this plot onto the plane log(x) = 1, with the
projections of the critical points and logarithmic gradients displayed. The logarithmic gradient at
the smooth critical point is a multiple of r = 1, and this is a contributing singularity. The vector
r = 1 does not lie in the normal cone at the non-smooth minimal critical point.

Definition 9.9 (contributing points for Laurent expansions) Let w ∈ Cd∗ be a
transverse point of H(z), and let H(z) = u(z)H1(z)p1 · · ·Hs(z)ps be a square-free
factorization of H in Ow. Consider a Laurent expansion of F(z) = G(z)/H(z) with
domain of convergenceD and for each 1 ≤ j ≤ s let vj be a real vector which points
away from Relog(D) such that (∇logHj)(w) = τvj for some τ ∈ C (the existence
of such vj follows from Proposition 3.13). The normal cone N(w) of H at w with
respect to this Laurent expansion is the positive span of the vectors v1, . . . , vs . The
point w is called a contributing singularity, or contributing point, for this Laurent
expansion in the direction r ∈ Rd∗ if r ∈ N(w).

Remark 9.9 If D is the power series domain of convergence of rational F(z) then
Proposition 3.12 in Chapter 3 implies the convex set Relog(D) contains some trans-
late of the negative orthant ofRd . Thus, any normal vector to a supporting hyperplane
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of the boundary of Relog(D) which contains a positive coordinate will point away
from Relog(D), verifying that Definition 9.9 is a generalization of Definition 9.8.

We are now ready to determine coefficient asymptotics.

9.2.2 Asymptotics via Residue Forms

Asymptotics for transverse points are determined by extending the approach of
Chapter 8, where the singular variety is a hyperplane arrangement, to transverse
points, where the singular variety locally looks like a hyperplane arrangement.
Unfortunately, the most natural way to generalize our previous uses topological
concepts like homology which are outside the scope of this text. We thus sketch
proofs in this section and refer to Pemantle and Wilson [26] for full details.

We begin by introducing some constructions necessary to state our results. Sup-
pose w is a transverse point of H(z) such that there is a square-free factorization
H(z) = u(z)H1(z)p1 · · ·Hs(z)ps in Ow, and let S = V(H1)∩ · · · ∩V(Hs)∩N for any
neighbourhood N of w in Cd on which all Hj are defined. Because the gradients of
the Hj are linearly independent at w, there exists a set P = {π1, . . . , πd−s} of d − s
distinct coordinates which analytically parametrize the remaining s coordinates of S.
In other words, for each j < P there exists an analytic function ζj(zπ1, . . . , zπd−s )
such that z ∈ S if and only if zj = ζj(zπ1, . . . , zπd−s ) for all j < P.

Definition 9.10 (constructions for transverse points) Under the setup of the pre-
ceding paragraph, we call P a set of parameterizing coordinates for V(H) at w,
and the set of functions {ζj : j < P} a local parameterization of V(H) at w. The
modified log-normal matrix of H at w is the d × d non-singular matrix

Γw =

©«

(∇logH1)(w)
...

(∇logHs)(w)
wπ1e(π1)

...

wπ(d−s)e(πd−s )

ª®®®®®®®®®¬
,

where e(j) is the jth elementary basis vector. Finally, define the function

g(θ1, . . . , θd−s) =
∑
j<P

rj log
[
ζj

(
wπ1 eiθ1, . . . ,wπd−s eiθd−s

)]
.

The parameterizedHessianmatrix of H atw is the (d−s)×(d−s)Hessianmatrix of g
at θ = 0, written Qw. If Qw has non-zero determinant then we call w nondegenerate.

As in Chapter 8, we can be most precise about asymptotics at a transverse point
where the number of factors of H in the local ring equals the number of variables.
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Recall from previous chapters the notation T(x) for the points of Cd with the same
coordinate-wisemodulus as x. Given p ∈ Ns wewrite (p−1)! = (p1−1)! · · · (ps−s)!.

Theorem 9.1 Fix a Laurent expansion of rational F(z) = G(z)/H(z) with domain
of convergence D and let r ∈ Rd∗ . Suppose x ∈ ∂D minimizes |z−r | on D, all
minimizers of |z−r | on D lie in T(x), and all elements of V ∩ T(x) are transverse
points. Suppose also that any critical point z in T(x) has r < ∂N(z), and that the set

E = {z ∈ T(x) : z is a contributing point for r} = {w}

contains a single point. IfH has square-free factorizationH(z) = u(z)H1(z)p1 · · ·Hd(z)pd

in Ow then there exists 0 < τ < |w−r | such that

fnr = w−nr np1+· · ·+pd−d
G(w)

(
rΓ−1

w
)p−1

u(w)| det Γw | (p − 1)!
+O(τn), (9.6)

where Γw is the parameterized Hessian matrix from Definition 9.10.

Proof (sketch) As always, our asymptotic analysis starts with the Cauchy integral
representation (9.2). Because all minimizers of |z−r | onD have the same coordinate-
wide modulus as w, and w is the only contributing singularity in T(w), the Cauchy
domain of integration can be deformed so that the only points of asymptotic in-
terest are arbitrarily close to w. Near w the image of the singular variety V under
the coordinate-wise logarithm map looks like a complete intersection of a simple
hyperplane arrangement. Because w is a contributing point, it seems reasonable to
think our asymptotic arguments from Section 8.3 of Chapter 8 would apply. Indeed,
Proposition 10.3.6 and Theorem 10.2.6 of Pemantle and Wilson [26] use the lan-
guage of relative homology to show that the coefficients fnr can be represented by
an integral over a product of circles around S = V(H1) ∩ · · · ∩V(Hd) (generalizing
Proposition 8.3 of Chapter 8). Theorem 10.3.1 of [26] then shows how to use the
theory of multivariate Leray residues to compute the expansion (9.6). Our work in
Section 8.3 of Chapter 8 can be seen as an explicit development of this theory for
the restricted case when H factors into real linear polynomials, so that linear algebra
techniques can replace homological methods. �

Remark 9.10 As was the case for hyperplane arrangements, when the number of
local factors equals the number of variables and the numerator G(w) , 0 then we
obtain dominant asymptotics up to an exponentially lower term.

Example 9.4 Continued (Asymptotics of the Lemniscate)

Recall again the lemniscate

L(x, y) =
(
1
3
− x

)2 (
1
2
− y

)2
+

(
5
6
− x − y

) (
11
6
− 4x − y

)
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with strictly minimal critical point % = (1/3, 1/2) such that L factors in O% as
L = L1L2 where (∇logL1) = (1/3, 1/2) and (∇logL2) = (4/3, 1/2). The matrix

Γ% =

(
1/3 1/2
4/3 1/2

)
has determinant −1/2 and the normal cone at % equals

N(%) =
{
a

(
2
3
, 1

)
+ b

(
8
3
, 1

)
: a, b > 0

}
.

Because % is strictly minimal and the boundary of amoeba(L) doesn’t contain a
line segment, for any direction (a, b) ∈ N(%) the point % is the unique minimizer
of |xayb | on the boundary of the power series domain of convergence of 1/L(x, y).
Thus, if (a, b) ∈ N(%) then Theorem 9.1 implies

[xanybn]L(x, y)−1 = 2
(
3a2b

)n
+O(τn),

for some 0 < τ < 3a2b .

When asymptotics are determined by a transverse point where the number of
factors of H in the local ring is less than the number of variables we still determine
dominant asymptotics, but the error term obtained is polynomially small instead of
exponentially small.

Theorem 9.2 Fix a Laurent expansion of rational F(z) = G(z)/H(z) with domain
of convergence D and let r ∈ Rd∗ . Suppose x ∈ ∂D minimizes |z−r | on D, all
minimizers of |z−r | on D lie in T(x), and all elements of V ∩ T(x) are transverse
points. Suppose also that any critical point z in T(x) has r < ∂N(z), and that the set

E = {z ∈ T(x) : z is a contributing point for r} = {w}

contains a single point, which is nondegenerate. If H has a square-free factorization
H(z) = u(z)H1(z)p1 · · ·Hs(z)ps in Ow then there exists 0 < τ < |w−r | such that

fnr = w−nr n(s−d)/2+p1+· · ·+ps−s

(
(2π)(s−d)/2 G(w)

(
rΓ−1

w
)p−1

u(w)
√

det(rdQw) | det Γw | (p − 1)!
+O

(
1
n

))
,

(9.7)
where Γw and Qw are defined in Definition 9.10.

Proof (sketch) As in the proof sketch of Theorem 9.1, we canmanipulate the Cauchy
integral representation (9.2) into an integral arbitrarily close to w. Now, Proposi-
tion 10.3.6 and Theorem 10.2.6 of [26] show that the coefficients fnr can be repre-
sented by an integral over the product of s circles around S = V(H1) ∩ · · · ∩V(Hd)

with a (d − s)-dimensional domain of integration (similar to Proposition 8.3 of
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Chapter 8). Integrating over the product of s circles leaves a (d − s)-dimensional
integral over a subset of S whose integrand is a ‘multivariate residue form’ in
the parametrizing variables zπ1, . . . , zπd−s of Definition 9.10 (generalizing Proposi-
tion 8.4 of Chapter 8). Theorem 10.3.4 of Pemantle and Wilson [26] shows how to
massage this integral into something amenable to a saddle-point analysis, which is
then asymptotically approximated. �

Remark 9.11 AlthoughTheorem9.2 applieswhen the number of factors s = d, in this
case it is weaker than Theorem 9.1. When asymptotics are determined by minimal
critical points, Theorems 9.1 and 9.2 generalize Theorem 8.2 from Chapter 8, which
applies when the factors Hj are linear. Unlike Theorem 8.2, however, Theorems 9.1
and 9.2 only apply to minimal points. Dealing with non-minimal critical points is a
large open problem in analytic combinatorics in several variables, discussed further
in Section 9.3 below.

Example 9.4 Continued (Lattice Path Asymptotics)

Consider again the lattice path model in N2 defined by the step set A =

{(−1, 1), (0,−1), (1, 1)}, whose generating function is the main diagonal of

F(x, y, t) =
(1 + x)(1 − xy2 + x2)

(1 − t(1 + x2 + xy2))(1 − y)(1 + x2)
.

Above we have seen that F admits a minimal contributing point σ = (1, 1, 1/3) in
the direction r = 1, which is thus a minimizer of |xyt |−1 on D. Problem 9.3 asks
you to prove that all minimizers of |xyt |−1 have the same coordinate-wise modulus
as σ (this also follows from our general argument in Chapter 10). We have already
calculated the logarithmic gradients

(∇logH2)(σ) = (−1,−2/3,−1) and (∇logH2)(σ) = (0,−1, 0),

and noted that the only critical point of T(σ) is σ itself. Furthermore, on the flat
V1,2 = V(1 − y, 1 − t(1 + x2 + xy2)) containing σ we can parametrize y and t by
their x-coordinates as y = 1 and t = 1/(1 + x + x2), giving

g(θ) = log(1) + log
(

1
1 + eiθ + e2iθ

)
= log

(
1

1 + eiθ + e2iθ

)
and Q = g′′(0) = 2/3. Since

Γσ =
©«
(∇logH1)(σ)
(∇logH2)(σ)

1 0 0

ª®¬ = ©«
−1 −2/3 −1
0 −1 0
1 0 0

ª®¬ ,
Theorem 9.2 implies the number wn of walks of length n on the stepsA which start
at the origin and stay in N2 satisfies
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wn = 3nn−1/2
√

3
2
√
π

(
1 +O

(
1
n

))
.

As usual, if there are a finite number of points determining asymptotics then we
can add the contributions from each of the points.

Corollary 9.1 If the set E in Theorems 9.1 and 9.2 contains a finite set of points,
all of which satisfy the conditions of Theorems 9.1 or 9.2, then one can sum the
contributions of each element of E given by (9.6) and (9.7) to find asymptotics of fnr.

We apply Theorem 9.2 and Corollary 9.1 to a variety of lattice path enumeration
problems in Chapter 10.

9.3 A Geometric Approach to ACSV

We end this chapter with a discussion of the most general aspects of ACSV, using
geometric constructions to give a high-level view of the theory and clarifying some
earlier remarks by putting our previous results in context. To discuss this approach
we first need to introduce some additional concepts from differential geometry. The
definitions presented here are tailored to our setting.

Definition 9.11 (smooth and complex manifolds) LetM ⊂ Ck for some positive
integer k. A chart of dimension s onM is a pair (U, φ) consisting of an open subset
U ⊂ M and a homeomorphism2 φ from U onto an open subset of Rs . An atlas
of dimension s forM is a collection of charts {(Uα, φα)} of dimension s such that
every p ∈ M is contained in at least one Uα. IfM admits an atlas of dimension s
such that for any charts (U, φ) and (V, ψ) the maps

φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V) and ψ ◦ φ−1 : φ(U ∩ V) → ψ(U ∩ V)

between subsets of Rs are smooth (all coordinates have derivatives of all orders)
thenM is a smooth manifold of dimension s. By replacing Rs by Cs in the above
constructions we can analogously define complex charts and complex atlases, andM
is a complex manifold of dimension s if it admits a complex atlas of dimension s
such that for any charts (U, φ) and (V, ψ) the maps φ ◦ ψ−1 and ψ ◦ φ−1 are analytic.

Whenever we talk about charts in a manifold we always mean charts with respect to
an atlas giving the manifold structure under consideration.

Example 9.8 (Smooth Varieties are Complex Manifolds)

Fix a polynomial H(z) and letV = V(H). If w ∈ V and (∂H/∂zd)(w) , 0 then the
implicit function theorem (Proposition 3.1 in Chapter 3) implies the existence of

2 Recall that a homeomorphism is a continuous bijective map whose inverse is also continuous.
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• a neighbourhood U of w inV,
• a neighbourhood N of ŵ in Cd−1,
• an analytic function g : N → C,

such that U = {(ẑ, g(ẑ)) : ẑ ∈ N}. In other words, if π : U → Cd−1 denotes the
projection π(z) = ẑ of a point in U to its first d − 1 coordinates then π−1 : N → Cd
is the analytic function g, so (U, π) forms a (d −1)-dimensional complex chart ofV.

Parameterizing other variables as necessary, if for each w ∈ V some partial
derivative of H does not vanish at w then this procedure constructs a complex atlas
ofV, showing thatV is a complex manifold of dimension d − 1.

Remark 9.12 By writing zj = xj + iyj to identify a complex variable zj with the
real variables xj and yj a complex manifoldM of dimension s can be viewed as a
smooth manifold of dimension 2s.

Our next definitions help us understand the behaviour of functions on a manifold.

Definition 9.12 (mappings, differentials, and stationary points) IfM is a smooth
manifold of dimension s then a function f : M → R is called smooth at p ∈ M if
there is a chart (U, φ) with p ∈ U such that the map f ◦ φ−1 : Rs → R is smooth
on φ(U). The differential of f at p is the vector dp f ∈ Rs whose jth entry equals
(∂g/∂xj)(p) for g(x1, . . . , xs) = ( f ◦ φ−1)(x1, . . . , xs).

Similarly, ifM is a complex manifold of dimension s then f : M → C is analytic
at p ∈ M if there is a chart (U, φ) with p ∈ U such that f ◦ φ−1 : Cs → C is analytic
on φ(U), and the differential of f at p is the vector dp f ∈ Cs whose jth entry equals
(∂g/∂zj)(p) for g(z1, . . . , zs) = ( f ◦ φ−1)(z1, . . . , zs).

In either case, p ∈ M is called a stationary point of f if dp f = 0. Note that
stationary points are usually called critical points, but we do not use this terminology
to prevent confusion with the critical points of ACSV.Whether p is a stationary point
does not depend on the chart used to calculate the differential of f .

Example 9.9 (Stationary Points)

Let H(x, y) = 1 − x − y and V∗ = V(H) ∩ Cd∗ be the roots of H with non-zero
coordinates. An atlas of V∗ is given by a single chart (V∗, π) where π(x, y) = x is
the projection map with inverse π−1(x) = (x, 1 − x). With respect to this chart the
function ψ(x, y) = log(x) + log(y) is represented by

g(x) = (ψ ◦ π−1)(x) = log(x) + log(1 − x).

Since g′(x) = 0 has the unique solution x = 1/2, the only stationary point of ψ
onV∗ is (1/2, 1/2).
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Fig. 9.5 Left: We can push down a cycle of integration at high height to a cycle arbitrarily close
to a stationary point, except for points of lower height (the curve C1 gets pushed down to C2, then
C3, then C4). Right: A problem arises when the gradient flow keeps decreasing but an asymptote
forces it to stay at bounded height.

9.3.1 A Gradient Flow Interpretation for Analytic Combinatorics

Before returning toACSV let us reflect on our first analytic argument for asymptotics,
back in Section 2.1.1 of Chapter 2, where we studied alternating permutations by
analyzing the coefficients of the meromorphic function f (z) = tan(z). The general
outline of that approach, reflected in Figure 2.2 of Chapter 2, can be summarized as

1. start with the univariate Cauchy integral formula for coefficients,
2. push the domain of integration away from the origin without crossing singulari-

ties until it consists of points where the Cauchy integrand is exponentially small,
except for points arbitrarily close to the dominant singularities z = ±π/2,

3. compute asymptotic contributions of the dominant singularities using residues.

Our goal is to generalize this thinking (as much as possible) to the multivariate
setting. To that end, fix a Laurent expansion of rational F(z) = G(z)/H(z) with
domain of convergence D and let r ∈ Rd∗ . Again we have the multivariate Cauchy
integral representation

fnr =
1
(2πi)d

∫
T

F(z)
znr+1 dz

where T is a polytorus in D. In the univariate case we pushed the domain of
integration away from the origin because that made the Cauchy integrand small.
Now the exponential growth of the Cauchy integrand is captured by the familiar
height function h(z) = −

∑d
j=1 rj log |zj |, so it makes sense to deform the domain

of integration T (without crossing the singular variety V) so that the maximum
of the height function on the domain of integration is minimized. The immediate
problem in the multivariate setting is that there are too many ways to deform the
domain of integration: it is not clear how the domain should be deformed in each of
its d coordinates, and it is possible to leave the domain of convergence D without
crossing a singularity.
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Thankfully, we are searching for special points on the singular variety. Starting
with a domain of integration at some (usually high3) height, we want to push the
domain of integration to points of lower height until it locally gets stuck; see the
left side of Figure 9.5. For any r ∈ R, let Vr denote the points in V with height at
least r . The points where the domain of integration can get stuck arise from a change
in the topology ofVr , and a study of such points is a classic geometric problem. In
particular, Morse theory [22] studies changes in the topology of super-level sets for
compact real manifolds sorted by a real height function. Stratified Morse theory [16]
extends this to sets (like algebraic varieties) which are not manifolds but can be
partitioned into a finite collection of manifolds which ‘fit together nicely’. Similar
results for complex varieties are also studied in Picard-Lefschetz theory [32].

These high-level theories tell us to partition the singular varietyV into manifolds
and study the stationary points of the height function h on each of the manifolds.
Unfortunately, because h depends on the moduli of the coordinates it is only analytic
in trivial cases. There are two ways to work around this difficulty,

1. If M is a complex manifold of dimension r then, as in Remark 9.12, we can
viewM ⊂ Cd as a smooth manifoldW ⊂ R2d of real dimension 2r . Setting
zj = xj + iyj and multiplying by two gives a modified height function η(x, y) =
2h(x+ iy) = −

∑d
j=1 rj log(x2

j + y
2
j )which is a smooth mapping, and we can look

for stationary points of η on the smooth manifoldW.

2. Because h is the real part of the analytic function ψ(z) = −
∑d

j=1 rj log zj , the
Cauchy-Riemann equations [17, Sec. 2.3] imply that the stationary points of the
smooth map η : W → R are the stationary points of ψ : M → C. One can thus
determine interesting topological information using the analytic function ψ.

Standard algebro-geometric constructions can be used to partition an arbitrary
algebraic setV into a finite collection of manifolds (see, for instance, Mumford [24,
Ch. 1A]). The techniques of stratified Morse theory, however, require a Whitney
stratification, which is a partition of V into manifolds with an extra condition
ensuring that for any manifold M in the partition the local picture of V near all
points ofM is consistent. A full discussion of Whitney stratifications is beyond the
scope of this text, but modern treatments can be found in Mather [20] and Goresky
and MacPherson [16, Ch. 1.2]. Of particular interest to us is the fact that there exist
algorithms [23, 28] which take an algebraic set V defined by explicit polynomial
equations and return a finite sequence of algebraic sets

� = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V,

each defined by explicit polynomial equations, such that the connected components
of the differences Fj \ Fj−1 form a Whitney stratification of V. This sequence of
algebraic sets, known as a canonical Whitney filtration of V, allows us to give a
general definition of critical points.

3 For instance, when dealing with power series expansions we can start with any product of circles
sufficiently close to the origin, which can thus contain points of arbitrarily high height.
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Definition 9.13 (critical points) Let F(z) be a rational function with singular vari-
etyV and fix r ∈ Rd∗ . Suppose F0 ⊂ F1 ⊂ · · · ⊂ Fr is a canonical Whitney filtration
of V. The critical points of F in the direction r is the set of stationary points of
the function ψ(z) = −

∑d
j=1 rj log zj restricted to the differences Fj \ Fj−1. A critical

point w in the stratum S is non-degenerate if there exists a chart (U, φ) of S with
w ∈ U and φ(w) = 0 such that the Hessian of ψ ◦ φ−1 at the origin is non-singular.

Given polynomials generating the elements of a canonical Whitney filtration, van-
ishing of the differential of ψ can be encoded as the vanishing of minors of a matrix
with explicit polynomial entries. Thus, when the denominator of F is a polynomial
with rational coefficients then all critical points have algebraic coordinates.

Remark 9.13 Definition 9.13 extends our previous definitions for critical points (in
the smooth, hyperplane, and transverse multiple point settings). As proven in Sec-
tion 5.3.4 of Chapter 5, generically the singular variety V is smooth, so a Whitney
stratification for V is just V itself. When V is smooth then the critical points of
Definition 9.13 are the solutions of the smooth critical point equations Hs(z) = 0
and rj z1Hs

z1
(z) − r1zjHs

z j
(z) = 0 for 2 ≤ j ≤ d from (5.16) in Chapter 5. If V is

not smooth but has a transverse polynomial factorization, the next most common
situation in practice, then critical points can be calculated using (9.4) above.

Roughly, stratified Morse theory tells us that the critical points of F(z) represent
the only obstructions to pushing down the Cauchy domain of integration to lower
height. Such results are obtained via gradient flows, which use the differential of
the height function on the Whitney strata to determine how to deform a domain of
integration arbitrarily close to V to points of lower height. At stationary points the
differential is zero, and the flow gets stuck.

Aside from stationary points there is one other situation in which the flow doesn’t
work as intended: when there is an ‘asymptote’ of V such that points on V go
to infinity with decreasing height, but the height of these points is bounded from
below4 (see the right side of Figure 9.5). To work around this issue, Baryshnikov
et al. [6] introduce a notion of stationary points at infinity, along with an algorithm
to determine when there are no such points. Certifying that no stationary points at
infinity exist then allows one to apply the usual techniques of Morse theory to reduce
the Cauchy integral for coefficients to a sum of saddle-point integrals which can
be asymptotically approximated. A characterization of stationary points at infinity
was a long-time sticking point in the use of Morse-like topological constructions in
ACSV contexts.

Recall the discussion on polynomial ideals and algebraic varieties from Sec-
tion 7.3 in Chapter 7. Our discussion of stationary points at infinity uses the following
construction.

4 In fact, not all asymptotes of this form are a problem, only those that influence gradient flows.
Indeed, sequences of points going out to infinity while staying at finite height appear generically
in at least three dimensions, so if the existence of any asymptote was a problem then the methods
developed using these arguments would not work on generic examples.



374 9 Multiple Points and Beyond

Definition 9.14 (saturation of ideals) Let I, J ⊂ C[z] be two polynomial ideals.
The quotient of I by J is the ideal (I : J) = { f ∈ C[z] : f g ∈ I for all g ∈ J}. If
(I : Jn) denotes the result of dividing I by J repeatedly n times then the sequence
(I : J) ⊂ (I : J2) ⊂ (I : J3) ⊂ · · · eventually stabilizes5 to an ideal (I : J∞) known
as the saturation of I by J.

Remark 9.14 Geometrically, the zero set V(I : J∞) is the smallest algebraic set
containingV(I) \V(J). There are algorithms for computing ideal saturations using
Gröbner bases [10, Table 6.6], and such algorithms have been implemented in
several6 algebra systems.

Although Baryshnikov et al. give more general results, to be explicit we fo-
cus on the generic case when F(z) = G(z)/H(z) has a smooth singular variety.
In order to avoid introducing even more geometric language, we do not fully de-
fine stratified points at infinity. Instead, we give the effective test of Baryshnikov
et al. [6, Prop. 3.2] which characterizes their absence. Recall from Chapter 5 that
the square-free factorization of a polynomial is the product of its irreducible fac-
tors and that the homogenization of a polynomial f (z) ∈ C[z] of degree k is the
polynomial zk0 f (z1/z0, . . . , zd/z0) ∈ C[z0, z].

Definition 9.15 (absence of stratified points at infinity) Let F(z) be the ratio of
coprime polynomials G(z) and H(z) with smooth singular variety V = V(H), and
fix r ∈ Rd∗ . Let H̃(z0, z) be the homogenization of the square-free part of H, and let I
be the ideal of C[z0, z, y] generated by the polynomials

H̃(z0, z) and yj z1H̃z1 (z0, z) − y1zj H̃z j (z0, z) for 2 ≤ j ≤ d.

Let C be the saturation of I by the ideal (z0) and Cr be the result of substituting y = r
and z0 = 0 in C. We say F has no stratified points at infinity in the direction r if the
only element ofV(Cr) is z = 0.

The rough idea behind Definition 9.15 is the following. By homogenizing H we
can move from Cd to complex projective space, so that ‘points at infinity’ can be
captured algebraically by pointswhere z0 = 0. The polynomials in the ideal I generate
the smooth critical points equations on V when the direction y is a parameter, and
saturation by z0 removes extra ‘points at infinity’ which are not limit points of critical
points in Cd . The elements of the saturation with y = r and z0 = 0 are thus limit
points of smooth critical points in directions approaching r which do not lie in Cd . If
any solution with z0 = 0 also has z = 0 then there are no solutions in projective space
(because H̃ is homogeneous the point (z0, z) = (0, 0) will always be a solution).

5 If I1 ⊂ I2 ⊂ · · · is an infinite ascending chain of ideals then the union of all Ij is also an ideal.
The Hilbert basis theorem states that this ideal has a finite set of generators, each of which must
lie in Ij with j sufficiently large, so the inclusions eventually become identities. The condition that
any infinite ascending chain of ideals stabilizes characterizes a Noetherian ring.
6 For instance, saturation of ideals is implemented by the Saturate command of the PolynomialIdeals
package in Maple.
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Example 9.10 (A Stratified Point at Infinity)

Consider the rational function F(x, y) = 1/H(x, y) with square-free denominator
H(x, y) = 2 + y − x(1 + y)2. Since the system

H(x, y) = Hx(x, y) = Hy(x, y) = 0

has no solutions, the singular varietyV is smooth. Furthermore, the system

H(x, y) = xHx(x, y) − yHy(x, y) = 0

has no solutions, so F has no critical points in the main diagonal direction. Homog-
enizing H gives H̃(z, x, y) = z3H(x/z, y/z) = 2z3 + z2y − x(z + y)2. Forming the
ideal I, using the PolynomialIdeals package of Maple to saturate by (z), then substi-
tuting in the main diagonal direction and z = 0 gives C1 = (x). Since V(C1) ⊂ C

2

contains non-zero solutions, such as (0, 1), there is a stratified point at infinity. Fig-
ure 5.5 of Chapter 5 shows the amoeba of H. The existence of a stratified point at
infinity is reflected by a limit direction of amoeba(H) which is normal to r = 1.
Further details are given in the worksheet corresponding to this example.

Example 9.11 (No Stratified Points at Infinity)

Consider the rational function F(x, y) = 1/H(x, y) with H(x, y) = 1 − x − y. Then
H̃(z, x, y) = z − x − y and for r = (r, s) we compute Cr = (y(r + s), x + y). There
are no stratified points at infinity if r + s , 0, in which case Cr = (x, y). There are
stratified points at infinity in directions which are a multiple of r = (1,−1).

Absence of stratified points at infinity implies that the gradient flow approach can
decompose the Cauchy integral into a sum of saddle-point integrals near stationary
points. The integrands of these saddle-point integrals are expressed by residues. IfV
is smooth and w ∈ V we write

Res
w,V

(
F(z)
znr+1 dz

)
=

(
Res

zk=g(zk̂ )

F(z)
znr+1

)
dz

k̂

for a coordinate zk and analytic function g(zk̂) such that z lies in some neighbourhood
of w inV if and only if zk = g(z

k̂
). When we use this notation it is implicit that the

stated formula is valid for any possible pair of coordinate zk and analytic function g.
Lemma 5.2 in Chapter 5 gives an explicit expression for the residue.

We are now ready to state the main result of Baryshnikov et al., simplified under
our hypothesis of smoothness.

Theorem 9.3 (Baryshnikov et al. [6, Thm. 2.16]) Let F(z) be the ratio of coprime
polynomials G(z) and H(z) with smooth singular varietyV = V(H). Suppose there
are no stationary points at infinity in the direction r ∈ Rd∗ and that the critical points
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of F in the direction r are all nondegenerate and form the finite set E = {w1, . . . ,wr }.
Then each wj can be paired with an integer κj such that

fnr =
∑
j∈χ

κj

(2πi)d−1

∫
Nj

Res
w j,V

(
F(z)
znr+1 dz

)
+O (τn) , (9.8)

where χ contains the elementswj ∈ E which have highest height among thosewith κj
non-zero, eachNj is a domain making the summands of (9.8) saddle-point integrals
(meaning after a coordinate change they satisfy the hypotheses of Proposition 5.3 in
Chapter 5), and 0 < τ < |wr | for any w ∈ χ.

Theorem 9.3 expresses fnr as a linear combination of saddle-point integrals, which
can be asymptotically approximated using Proposition 5.3 of Chapter 5. The inte-
gers κj in the theorem arise from expressing the original Cauchy cycle of integra-
tion T in a basis for ‘relative singular homology of a pair consisting of subsets
of Cd∗ \V and points of lower height’; they can be very difficult to determine directly
using geometric arguments, and we do not give a full definition7.

Remark 9.15 If one of the critical points wj in Theorem 9.3 is minimal, we have
seen in Chapter 5 that the corresponding integer coefficient κj equals one if wj

is contributing and zero otherwise. The power of Theorem 9.3 is that it tells us
something about the asymptotic contributions of non-minimal critical points, an
extremely difficult task outside of very specialized circumstances (since it is hard
to deform the Cauchy domain of integration outside the domain of convergence).
Other than minimal points, DeVries et al. [13] show how to determine the non-zero
coefficients of highest height for bivariate functions with a smooth singular variety.
There are also extensions of Theorem 9.3 to non-smooth singular varieties, and we
have seen in Chapter 8 how to compute the coefficients κj when V is a hyperplane
arrangement (in this situation each κj is ±1 or 0, depending on the orthant of the
critical point wj and whether or not it is contributing).

An important corollary of Theorem 9.3 is the following, which bounds the expo-
nential growth of r-diagonals by the maximum of a finite algebraic set.

Corollary 9.2 Under the assumptions of Theorem 9.3, let ρ be the maximum height
of a critical point of F in the direction r. Then lim supn→∞ | fnr |

1/n ≤ eρ.

Example 9.12 (Quantum RandomWalks)

Discrete quantum random walks have been studied as a computational primitive for
quantum computation (see, for instance, Ambainis et al. [1]). Bressler and Peman-
tle [12] analyze the behaviour of one-dimensional quantum walks which either stay
stationary or move one step to the right at each time step, and always evolve an
underlying quantum state, using bivariate generating functions of the form

7 In fact, if η = max{h(w j ) : κ j , 0} then only the coefficients κ j with h(w j ) ≥ η are uniquely
defined. These non-zero coefficients of high height are the only ones which appear in (9.8).
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Fig. 9.6 Series coefficients of the polynomial f (x) = [y300]F(x, y) where F(x, y) = (1 − cy +
cxy−xy2)−1 for c = 1/3: the coefficients are represented by dots, with consecutive terms connected
by a line for visibility. Note the exponential drop outside of the interval [100, 200].

F(x, y) =
G(x, y)

1 − cy + cxy − xy2 =
∑
i,n≥0

fi,nxiyn,

where c ∈ (0, 1) is a parameter encoding the transition probabilities of the walk
model,G(x, y) is a polynomial encoding the initial fixed state of themodel, and | fi,n |2
is the probability that a walk ends at x = i after n steps. Unlike ‘classical’ walk
models, where the endpoint probabilities for walks of large length usually approach
a normal distribution, quantum walks experience an ‘interference pattern’ which
makes the endpoint distribution far from normal (see Figure 9.6). Because the y

variable tracks the length of a walk, and a walk takes at most one step at each time
period, we are interested in asymptotic behaviour of the coefficients [xλnyn]F(x, y)
for 0 < λ < 1, given by the r = (λ, 1) diagonal. Of particular interest is the fact that
the walk probability decays exponentially for λ outside J = [(1 − c)/2, (1 + c)/2].

A quick computation shows that for any c ∈ (0, 1) there are no stratified points at
infinity. For any fixed values of c and λ < J a computer algebra system can easily
solve the smooth critical point equations H = xHx − λyHy = 0 and verify that all
critical points have negative height. Corollary 9.2 then implies exponential decay
of the r = (λ, 1) diagonal by examining this finite set of algebraic points (without
the need to determine minimality or any other properties of the singular variety).
Detailed studies of quantum walks using analytic combinatorics in several variables
can be found in Bressler and Pemantle [12] and Baryshnikov et al. [7].

Although it is usually not possible to determine the integers κj directly using
geometric arguments, or even say if they are non-zero, knowing that these coefficients
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are integers can be very useful. Combined with the techniques on numeric analytic
continuation for D-finite functions from Section 2.4 of Chapter 2, which allows
one to determine asymptotics up to numeric constants with rigorous error bounds,
this can be used to create a powerful tool for attacking the connection problem for
sequences satisfying linear recurrence relations. We illustrate the possibilities of this
combination on an example.

9.3.2 Attacking the Connection Problem through ACSV and Numeric
Analytic Continuation

While resolving certain conjectures about the eventual positivity of sequences en-
coded by multivariate rational functions, Baryshnikov et al. [8] consider8 the main
power series diagonal coefficients of

F(w, x, y, z) =
1

H(w, x, y, z)
=

1
1 − (w + x + y + z) + 27wxyz

.

The system

H(w, x, y, z) = Hw(x, y, z) = Hx(w, x, y, z) = Hy(w, x, y, z) = Hz(w, x, y, z) = 0

has a unique solution at (w, x, y, z) = σ = (1/3, 1/3, 1/3, 1/3), which is the only
non-smooth point of the singular variety V = V(H). One thus obtains a Whitney
stratification of the singular variety V by taking S1 = {σ} and S2 = V \ {σ} as
strata. Because σ lies in a stratum with a single element, it is a critical point (the
height function is trivially constant on the stratum, so its differential is zero). The
critical points in S2 are obtained by solving the smooth critical point equations

H = wHw − xHx = wHw − yHy = wHw − zHz = 0,

giving two smooth critical points τ+ = (ω+, ω+, ω+, ω+) and τ− = (ω−, ω−, ω−, ω−)
for ω± = (−1 ± i

√
2)/3. Because σ has smaller coordinate-wise modulus than τ±,

the points τ± are not minimal. Applying either the algorithms of Chapter 7, or the
famous Grace-Walsh-Szegő theorem [11, Thm. 1.1] on the distributions of zeroes of
symmetric polynomials which are linear in each variable (see Problem 9.7 below),
shows that σ is minimal. Thus, there is a single minimal critical point σ, which is

8 Continuing work of Gillis et al. [15] and Straub and Zudilin [30], Baryshnikov et al. study values
of the real parameterC such that the main diagonal of F(z) = (1− (z1 + · · ·+ zd )+Cz1 · · · zd )

−1

contains only a finite number of negative values. The most interesting case isC = C∗ = (d−1)d−1,
which is the threshold for different behaviour (when C < C∗ there are only a finite number of
negative values, and when C > C∗ there are an infinite number of both positive and negative
values). When d is even and at least four, and C = C∗, the topology of the singular variety is
perfectly aligned so that asymptotics are determined by non-minimal critical points; the rational
function here is the smallest such example. See also the discussion in Section 3.4.5 of Chapter 3
for some context on these positivity problems.
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not smooth, and two smooth critical points τ±, which are not minimal. Computing
the ideal C1 in Definition 9.15 proves there are no stratified points at infinity.

To better understand the minimal critical pointσ we examine the series expansion

H
(
w +

1
3
, x +

1
3
, y +

1
3
, z +

1
3

)
= 3(wx +wy +wz + xy + xz + yz) + higher terms,

of H atσ. Because the leading term is an irreducible quadratic, Lemma 9.1 impliesσ
is not a transverse multiple point. In fact, the invertible change of variables9

w 7→ a +
√

6b +
√

2c + d + 1/3 x 7→ a − 3d + 1/3

y 7→ a − 2
√

2c + d + 1/3 z 7→ a −
√

6b +
√

2c + d + 1/3

transforms the leading term into 18(a2 − b2 − c2 − d2). A singularity whose leading
term can put into the form z2

1 − z2
2 − · · · − z2

d
is called a cone point, since the real

solutions of such a polynomial form two d-dimensional cones meeting at a point.
Baryshnikov and Pemantle [9] show that minimal critical cone points typically

determine asymptotic behaviour of rational diagonals, exceptwhen they occur in even
dimensions greater than four (which is precisely our situation). In even dimensions
greater than four, a peculiar lacuna phenomenon10 appears, suggesting that cone
points may not contribute to coefficient asymptotics. Indeed, Baryshnikov et al. [5,
Thm. 2.3] use an in-depth topological argument to show that for our rational function
(and others of a similar form) the Cauchy domain of integration can be pushed
past the minimal critical cone point σ, which thus does not affect asymptotics. In
particular, our example is a pathological case where asymptotics are determined by
non-minimal critical points. We find asymptotics by expressing dominant coefficient
behaviour in two ways: as a linear combination with unknown integer coefficients
using the geometric approach to ACSV from this chapter, and as a linear combination
with complex number coefficients that can be rigorously approximated using the
computational tools for D-finite functions from Chapter 2.

Expression #1 from ACSV

Because there are no stationary points at infinity and the Cauchy domain of inte-
gration can be pushed past the critical point σ, which has highest height among
the three critical points in our example, asymptotic coefficient behaviour will be
determined by the smooth (non-minimal) critical points τ± of height h(τ±) = log 9.
Theorem 2.16 of Baryshnikov et al. [6], which is an extension of Theorem 9.3 that
allows non-smooth points such as σ, implies the asymptotic contributions of τ± are
integer multiples of what they would be if these points were minimal critical points.
In other words, there exist integers κ+ and κ− such that the power series coefficients

9 This change of variables is found by diagonalizing the matrix M such that the leading term of H
atσ is vMvT for v =

(
w x y z

)
; see the worksheet corresponding to this example for details.

10 See, for instance, Petrowsky [27] and Atiyah et al. [4].
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of F(w, x, y, z) satisfy

fn,n,n,n = κ−Φτ− (n) + κ+Φτ+ (n) +O (ρn) (9.9)

for some 0 < ρ < 9, where Φτ± (n) are the asymptotic expansions

Φτ− (n) =

(
−7 + 4i

√
2
)n

n3/2π3/2

©«−
(√

2 − 5i
) √
−2i
√

2 − 8

24
+O

(
1
n

)ª®®¬
Φτ+ (n) =

(
−7 − 4i

√
2
)n

n3/2π3/2

©«−
(√

2 + 5i
) √

2i
√

2 − 8

24
+O

(
1
n

)ª®®¬
given by the right-hand side of (5.27) in Chapter 5 assuming τ± are minimal. As
mentioned above, it is not immediately clear how to determine the integers κ± using
geometric arguments.

Expression #2 from Numeric Analytic Continuation

Recall from Chapter 3 that the diagonal of any rational function satisfies a linear
differential equation with polynomial coefficients. In fact, the creative telescoping
techniques discussed in Section 3.2.1 of Chapter 3 allow us to compute that the
diagonal f (t) = (∆F)(t) of our rational function satisfies

t2(81t2 + 14t + 1) f (3)(t) + 3t(162t2 + 21t + 1) f (2)(t)
+ (21t + 1)(27t + 1) f ′(t) + 3(27t + 1) f (t) = 0.

(9.10)

The analysis of D-finite functions in Section 2.4 of Chapter 2 implies that the only
singularities of f (t) occur at the roots t = ω4

± of the leading coefficient factor
81t2+14t+1 = 0. Following the techniques discussed in Section 2.4.1 of Chapter 2,
we can compute a basis of solutions to (9.10) for t ∈ {0, ω4

±} and use numeric analytic
continuation to determine singular expansions of f (t) at t = ω4

±. Performing these
calculations with the Sage package of Mezzarobba [21] allows us, in a few seconds
of computation time, to determine an asymptotic expansion

fn,n,n,n =

(
−7 + 4i

√
2
)n

n3/2

(
(0.3066 . . . ) + (0.146 . . . )i +O

(
1
n

))
+

(
−7 − 4i

√
2
)n

n3/2

(
(0.3066 . . . ) − (0.146 . . . )i +O

(
1
n

)) (9.11)
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whose coefficients are rigorously certified to over a thousand digits. Without ad-
ditional information it is impossible to exactly determine the coefficients in this
expansion, even though they can be approximated to arbitrary accuracy.

Determining Asymptotics Exactly

Equations (9.9) and (9.11), one with unknown integers and the other with approxi-
mated coefficients from a larger field, are perfect complements, and combining the
expressions allows us to approximate κ1, κ2 = 2.999 . . . to over a thousand decimal
digits in a few seconds. Even knowing these integers to a single decimal digit is
enough to rigorously conclude that κ1 = κ2 = 3 and thus exactly determine asymp-
totics of the diagonal sequence under consideration. One can think of the κj as a sort
of ‘winding number’ of the starting Cauchy domain of integration T . Working in
four-dimensional complex space (which is extremely difficult to picture) one can de-
form T to points of height smaller than h(σ), eventually moving to neighbourhoods
of τ± and points of even lower height, but this process ‘wraps’ T three times around
the smooth critical points, giving a multiplicity. Our combination of geometric and
computer algebra based techniques allows us to determine the multiplicity. A direct
geometric argument for this multiplicity is current unknown.

9.3.3 The State of Analytic Combinatorics in Several Variables

The methods of this chapter suggest a general strategy for analyzing Laurent coeffi-
cients of a function F(z) with singular varietyV,

1. Determine a Whitney stratification ofV and, for a fixed direction, compute the
critical points of the height function on each strata using Definition 9.13.

2. Verify there are no stationary points at infinity using Definition 9.15 (or a
generalization which takes into account non-smooth points).

3. Express, up to negligible error, the Cauchy integral for coefficients as an integer
sum of integrals over neighbourhoods of critical points (as in Theorem 9.3).

4. Asymptotically approximate each of the integrals appearing in this expression.

As detailed in Baryshnikov et al. [6], Steps 1 and 2 are now essentially solved.
Step 3 is a topological problem, and is typically the most difficult task of an analysis.
Aside from the few special cases mentioned above, such as minimal contributing
points, no general algorithm for Step 3 is known. Step 4 depends heavily on the
local geometry of V at each critical point. For a critical point which is a non-
degenerate transverse multiple point, the corresponding integrals are saddle-point
integrals which can be asymptotically approximated. Asymptotics of integrals cor-
responding to degenerate transverse multiple points can in theory be computed [31],
although such examples are not prominent in the analytic combinatorics literature.
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Using results of Atiyah et al. [4] on inverse Fourier transforms of homogeneous
hyperbolic functions, Baryshnikov and Pemantle [9] and Baryshnikov et al. [5] de-
termine asymptotics for certain types of cone points. Explicit results for singular
varieties with more exotic singular behaviour are harder to find, although much of
the necessary background needed to attack such problems can be found in [2, 3].

In order to limit the necessary background, our presentation of this advanced
approach to analytic combinatorics in several variables did not dig deeply into the
underlying theory. A full discussion on such topics can be found in Baryshnikov et
al. [6] and the textbook of Pemantle and Wilson [26].

Problems

9.1 Prove that if A(x, y, z) and B(x, y, z) are power series whose product is z2−x2−y2

then one of A or B is invertible as a power series.

9.2 Prove that σ = (1, 1, 1/3) is a minimal point of

F(x, y, t) =
(1 + x)(1 − xy2 + x2)

(1 − t(1 + x2 + xy2))(1 − y)(1 + x2)
.

Hint: Although F is not combinatorial a short argument allows one to apply Propo-
sition 5.4 from Chapter 5. Alternatively, one can use the algorithms of Chapter 7.

9.3 Using Proposition 4.5 of Chapter 4 and Proposition 5.4 from Chapter 5, prove
that all minimizers of |xyt |−1 on the power series domain of convergence of

F(x, y, t) =
(1 + x)(1 − xy2 + x2)

(1 − t(1 + x2 + xy2))(1 − y)(1 + x2)

have the same coordinate-wise modulus as σ = (1, 1, 1/3).

9.4 The number of three-dimensional ‘singular vector tuples of generic tensors’ (as
discussed in [25] and Problem 5.5 of Chapter 5) has multivariate generating function

F(x, y, z) =
xyz

(1 − x)(1 − y)(1 − z)(1 − x − y − z)(1 − xy − xz − yz)
.

Using algebraic relations between the denominator factors, decompose F as a sum
of rational functions such that the denominator of each summand has at most three
distinct linear factors. Use Theorems 9.1 and 9.2 to determine asymptotics along
different directions r ∈ Rd

>0. For which directions do these theorems not apply?

9.5 Let F(x, y) = 1
(1−x2−y)(1−x−y2)

. Determine the directions to which Theorems 9.1
and 9.2 apply and determine asymptotics of the power series expansion of F in these
directions.
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9.6 In statistical signal processing, the design of multivariate autoregressive filters
requires estimating series coefficients of certain spectral density functions. In this
paradigm, Geronimo et al. [14] study the Laurent series coefficients of

F(x, y) =
xy(

1 − x+y
C

) (
xy − x+y

C

)
for a real parameterC > 2, expanded in the unique domain of convergence containing
the point (1, 1). Use Theorems 9.1 and 9.2 to find asymptotics in different directions,
as a function of C.

9.7 Let F(z) = (1 − (z1 + · · · + zd) + Cz1 · · · zd)−1 and let C∗ = (d − 1)d−1. Prove
the singular variety V is smooth if and only if C , C∗. If C < C∗ show that there
is a single smooth minimal critical point for the main diagonal direction, which has
positive coordinates, and determine asymptotics of the main diagonal of F. You
may use without proof the Grace-Walsh-Szegő theorem [11, Thm. 1.1]: if f (z) is
unchanged by permutations of the variables, f is linear in each variable individually,
and f (w) = 0 where each |wj | < r then there exists |ω | < r with f (ω, ω, . . . , ω) = 0.

9.8 In Section 9.3.2 we found asymptotics of a four variable rational function whose
coefficient behaviour was determined by two non-minimal critical points. Consider
the next smallest example in this family, the six variable rational function

F(u, v,w, x, y, z) =
1

1 − (u + v + w + x + y + z) + 3125uvwxyz
.

Show that there is a single non-smooth point, when all variables equal 1/5, which
is a cone point, and show that there are four (non-minimal) smooth critical points
for the main diagonal. Assuming the results of Baryshnikov et al. [5], which imply
the Cauchy integral can be deformed past the cone point, mirror the arguments
of Section 9.3.2 to determine asymptotics of the main diagonal of F. You may
also assume the Grace-Walsh-Szegő theorem from Problem 9.7. An annihilating
differential equation for the diagonal can be computed using theMAGMApackage of
Lairez [18], or found on the textbook website. Note that, unlike the four-dimensional
case, not all smooth critical points determine dominant asymptotics.
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Chapter 10
Application: Lattice Paths, Revisited

We have continually to make our choice among different courses
of action open to us, and upon the discretion with which we
make it, in little matters and in great, depends our prosperity
and our happiness.
— William A. Whitworth

Thus all actions have one or more of these seven causes: chance,
nature, compulsion, habit, reasoning, passion, desire.
– Plato

In our final chapter we return to lattice path enumeration, combining the generat-
ing function expressions from Chapter 4 with the asymptotic results of Chapter 9.
Once again, we see that lattice path models with similar combinatorial properties
have generating functions encoded by multivariate diagonals with similar analytic
properties, and can thus be treated uniformly.

First, Section 10.1 generalizes the results of Chapter 6 from lattice path models
whose step sets are symmetric over ever axis to models whose step sets are sym-
metric over all but one axis1. This work, originally carried out in Melczer and Wil-
son [9], solved previous conjectures on the asymptotics of two-dimensional lattice
path models restricted to a quadrant which had resisted purely univariate techniques.
Our presentation of this material follows [9]. Section 10.2 then discusses further
work from the lattice path literature where diagonal representations and analytic
combinatorics in several variables have appeared. A collection of exercises from this
literature is presented for the reader to hone their ACSV skills.

Although we reintroduce terminology as needed, the reader who hasn’t yet gone
through Chapter 4 is encouraged to do so. In particular, recall that for any dimen-
sion d ∈ N a lattice path model of dimension d is defined by a non-empty finite
set of steps S ⊂ Zd , a restricting region R ⊂ Rd , a starting point p ∈ R, and
a terminal set T ⊂ R. The model defined by these parameters consists of all fi-
nite tuples (s1, . . . , sr ) ∈ Sr , called walks or paths, such that p + s1 + · · · + sr ∈ T
and p+s1+ · · ·+sk ∈ R for all 1 ≤ k ≤ r . We often associate a weight ws > 0 to each
step s ∈ S and enumerate walks by weight, where the weight of a walk (s1, . . . , sr ) is
the product ws1 · · ·wsr of the weights of its steps. An unweighted model, where one
simply counts walks by the number of steps they contain, is the same as the weighted
model where each step has weight one. Unless otherwise stated the terminal set T
of a model is taken to be the entire restricting region R.

1 Recall from Proposition 4.10 in Chapter 4 that in any dimension d ≥ 2 there exists a lattice
path model restricted to Nd whose set of steps is symmetric over all but two axes which cannot be
written as the diagonal of a rational function.

387
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Fig. 10.1 The mostly symmetric step sets of dimension two, up to isomorphism. The step sets in
the first row have positive drift, while those in the second row have negative drift.

10.1 Mostly Symmetric Models in an Orthant

We begin by studying walks defined by a weighted step set S ⊂ {±1, 0}d , where
each s ∈ S is given a weight ws > 0, such that

• Walks on the step set can move forwards and backwards in each direction,

For all j = 1, . . . , d there exists a step s ∈ S with sj = 1

For all j = 1, . . . , d there exists a step s ∈ S with sj = −1

• Walks are restricted to R = Nd ,

• The step set and weighting are symmetric over every axis except for one.

Recall from Chapter 4 that a lattice path model satisfying these conditions is called
mostly symmetric, while a lattice path model defined by a step set that is symmetric
over every axis is called highly symmetric. In Chapter 6 we gave explicit asymptotic
results for highly symmetric models using the analytic methods of Chapter 5 and
the fact that the generating function of a highly symmetric model can be represented
by the diagonal of a rational function with a smooth singular variety. Now that we
have developed analytic combinatorics in several variables for non-smooth points in
Chapter 9, we will be able to derive asymptotics for mostly symmetric models.

Example 10.1 (Mostly Symmetric Models in the Quadrant)

Recall from Section 4.1.4 of Chapter 4 that many two-dimensional lattice path
models in the quadrant N2 are isomorphic to each other (if their defining step sets
differ by a reflection over the line y = x) or are isomorphic to half-space models (if
one of the bounding axes is never interacting with). Figure 10.1 displays all mostly
symmetric step sets of dimension two, up to reflection over the line y = x, after step
sets corresponding to half-space models are removed.

As in previous chapters, for a variable z we adopt the notation z = 1/z, which is
common in the lattice path literature (we never use an overline to denote complex
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Class Exponential Growth Order Geometry Covered By
highly symmetric S(1) n−d/2 smooth Theorem 6.1 in Ch. 5
positive drift S(1) n1/2−d/2 non-smooth Theorem 10.1
negative drift < S(1) n−1−d/2 smooth Theorem 10.2

Table 10.1 Summary of our asymptotic results, including whether or not the exponential growth
is the same as the number of unrestricted walks, and whether the contributing singularities in our
asymptotic analysis are smooth or non-smooth points.

conjugation). Without loss of generality we may assume the axis of non-symmetry
for a mostly symmetric model corresponds to its final coordinate, meaning the
(weighted) characteristic polynomial

S(z) =
∑
s∈S

wszs

satisfies S(z1, . . . , zj−1, z j, zj+1, . . . , zd) = S(z) for all 1 ≤ j ≤ d − 1. Because the
step sets under consideration are subsets of {±1, 0}d , this implies we can write

S(z) = zdA(ẑ) +Q(ẑ) + zdB(ẑ) (10.1)

for Laurent polynomials A(ẑ),Q(ẑ), and B(ẑ) symmetric in ẑ = (z1, . . . , zd−1).
Amostly symmetric step set only has one unrestricted coordinate, so the properties

of the step set in this coordinate are crucial to its asymptotic behaviour. In particular,
we will see that models share a similar asymptotic template depending on whether
more steps move towards or away from the boundary axes. This concept is captured
by the following definition.

Definition 10.1 (drift for mostly symmetric models) Given a mostly symmetric
model with characteristic polynomial S(z) satisfying (10.1), the drift of the model is
the real number δ = B(1) − A(1), which is the total weight of steps with positive dth
coordinate minus the total weight of steps with negative dth coordinate. The model
has negative, zero, or positive drift depending on whether δ < 0, δ = 0, or δ > 0.

Although we will make use of a uniform diagonal expression for all mostly
symmetric models, the local geometry of the singular variety at the contributing
singularities (in particular, whether the contributing singularities are smooth or non-
smooth transverse multiple points) will depend on the drift of the model. Table 10.1
outlines the different cases that we cover. As can be expected, when the total weight of
a step set is fixed then negative drift models, where walks tend towards the boundary
axes, grow the slowest (in fact, exponentially slower than models on the same set
of steps that are not restricted to an orthant) while positive drift models grow the
fastest. Our analytic calculations will explicitly show how the drift comes into play
when determining asymptotics.

We now describe our various results in more detail, before proving them.
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Asymptotics of Positive Drift Models

For each 1 ≤ k ≤ d −1 let bk =
∑

s∈S,ik=1 ws be the total weight of the steps moving
forwards in the kth coordinate (which by symmetry is also the total weight of steps
moving backwards in the kth coordinate).

Theorem 10.1 (Positive Drift Asymptotics) Let S ⊂ {−1, 0, 1}d be a weighted set
of steps that is symmetric over all but one axis and moves forwards and backwards
in each coordinate. If the model defined by S has positive drift then the number cn
of walks taking n steps in S, beginning at the origin, and never leaving Nd satisfies

cn = S(1)nn1/2−d/2

[(
1 −

A(1)
B(1)

) (
S(1)
π

) d−1
2 1
√

b1 · · · bd−1

] (
1 +O

(
n−1

))
. (10.2)

As with our results in Chapter 6 on highly symmetric models, Theorem 10.1 can
be instantly applied to any givenmodel, and families ofmodels in varying dimension.

Example 10.2 (A Family of Positive Drift Models)

For any d ∈ N consider the (unweighted) model with characteristic polynomial

S(z) = zd + zd
∏
j<d

(zj + z j),

so that S has a single step with negative dth coordinate. Then Theorem 10.1 implies

cn =
(
1 + 2d−1

)n
n1/2−d/2

[
2d−1 − 1
(2dπ)(d−1)/2

] (
1 +O

(
n−1

))
.

This lattice path model can be viewed a queuing system with d servers where at
every discrete time step either the final server processes a job, or a job is added onto
the queue for the final server and the first d − 1 servers each simultaneously receive
or process one additional job (when there is at least one job to be processed).

Theorem 10.1 is proven in Section 10.1.2.

Asymptotics of Negative Drift Models

Let ρ =
√

A(1)/B(1) and for each 1 ≤ k ≤ d − 1 let bk(zk̂) = [zk]S(z). We will soon
see that unlike the positive drift case, when there is always a unique contributing
singularity, under certain circumstances asymptotics of negative drift models will
be determined by two contributing singularities. With that in mind, we define
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Cρ =
S(1, ρ) ρ

2 πd/2 A(1)(1 − 1/ρ)2

√
S(1, ρ)d

ρ b1(1, ρ) · · · bd−1(1, ρ)B(1)

and let C−ρ be the constant obtained by replacing ρ by −ρ in Cρ. The term under the
square-root in Cρ and C−ρ will always be positive when it appears in our formulas.

Theorem 10.2 (Negative Drift Asymptotics) Let S ⊂ {−1, 0, 1}d be a weighted set
of steps that is symmetric over all but one axis and moves forwards and backwards
in each coordinate. If the model defined by S has negative drift and Q(ẑ) , 0 (i.e.,
if there are steps in S whose dth coordinate is zero) then the number cn of walks
taking n steps inS, beginning at the origin, and never leaving the orthantNd satisfies

cn = S(1, ρ)nn−1−d/2Cρ
(
1 +O

(
n−1

))
.

If the model defined by S has negative drift and Q(ẑ) is identically zero then

cn =
[
S(1, ρ)nn−1−d/2Cρ + S(1,−ρ)nn−1−d/2C−ρ

] (
1 +O

(
n−1

))
.

Example 10.3 (A Family of Negative Drift Models)

For any d ∈ N consider the (unweighted) model with characteristic polynomial

S(z) = zd
∏
j<d

(zj + z j) + zd,

whose set of steps is the negation of our last example. A quick calculation shows

ρ = 2(d−1)/2, Cρ =
22d−3/2

πd/2
(
2(d−1)/2 − 1

)2 , and C−ρ =
22d−3/2

πd/2
(
2(d−1)/2 + 1

)2 ,

so Theorem 10.2 implies

cn =
(
2(d+1)/2

)n
n−1−d/2

[
22d−3/2κn

πd/2
(
2d−1 − 1

)2

] (
1 +O

(
n−1

))
,

where κn equals 2d +2 when n is even and 2(d+3)/2 when n is odd. This model can be
viewed a queuing system with d servers where at every discrete time step either the
final server adds a job to its queue, or the final server processes a job from its queue
and the first d − 1 servers each simultaneously receive or process one additional job.

Theorem 10.2 is proven in Section 10.1.3.
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Zero Drift Models

The zero drift models break down into two sub-cases, one easy to handle and the other
more difficult. First, if A(ẑ) = B(ẑ) then the model with characteristic polynomial
S(z) is highly symmetric and asymptotics for the number of walks are determined
in Chapter 6. For unweighted models in dimension two, the motivating case for
much of our asymptotic work, this is the only situation that can occur. Unfortunately,
for unweighted models in dimension three and greater, and weighted models in
dimension two, it is possible for a step set to have zero drift and not be highly
symmetric2. The diagonal representations in Chapter 4 for generating functions of
mostly symmetric models have particularly nasty analytic behaviour for non-highly
symmetric models with zero drift (similar to our discussion of asymptotics along
non-generic directions in Chapter 8). Because of this additional difficulty we do not
cover the zero drift models in detail.

10.1.1 Diagonal Expressions and Contributing Points

Our asymptotic results follow from the diagonal expressions derived in Chapter 4.
First, we note that Proposition 4.8 of Chapter 4 states that the generating function
enumerating walks in a mostly symmetric lattice path model by length satisfies

C(t) = ∆
©«
(1 + z1) · · · (1 + zd−1)

(
B(ẑ) − z2

d
A(ẑ)

)
(1 − zd)B(ẑ)(1 − tz1 · · · zdS(z))

ª®®¬ , (10.3)

where the rational function is expanded in the ring R = Q((z))[[t]], the diagonal
operator ∆ was introduced in Definition 3.23 of Chapter 3, and

S(z) = S(z1, . . . , zd−1, zd).

Equation (10.3) was used in Chapter 9 to derive asymptotics for two mostly sym-
metric lattice path models, one of which was the running example for that chapter.

Unfortunately, the presence of the factor B(ẑ) in the denominator of (10.3)
can make the contributing singularities that determine diagonal asymptotics non-
minimal. Thus, to simplify our asymptotic arguments we use the alternative diagonal
expression given by Proposition 4.9 of Chapter 4. Proposition 4.9 states that the gen-
erating function enumerating walks in a mostly symmetric lattice path model by
length is the main power series diagonal of F(z, t) = G(z, t)/H(z, t), where

2 For example, the mostly symmetric three-dimensional model with A(x, y) = x + x + y + y,
B(x, y) = x/y + y/x + xy + 1/(xy), and Q(x, y) = 0 has zero drift but is not highly symmetric.
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G(z, t) = (1 + z1) · · · (1 + zd−1) (1 − tz1 · · · zd (Q(ẑ) + 2zdA(ẑ)))

H(z, t) =
(
1 − tz1 · · · zdS(z)

)
(1 − tz1 · · · zd (Q(ẑ) + zdA(ẑ))) (1 − zd).

(10.4)

Note that under our assumptions G and H are coprime as polynomials, so the
singularities ofF form the algebraic setV = V(H). Following the setup ofChapter 9,
we define the factors

H1 = 1 − tz1 · · · zdS(z)
H2 = 1 − tz1 · · · zd (Q(ẑ) + zdA(ẑ))
H3 = 1 − zd

and the flatsV1 = V(H1),V2 = V(H2), andV3 = V(H3).

Remark 10.1 One may be tempted to prove that H = H1H2H3 is a transverse poly-
nomial factorization of H, in the sense of Definition 9.3 from Chapter 9, but this is
not always the case. For instance, in the three-dimensional model with characteristic
polynomial S(x, y, z) = z + z(x + x + y + y) the point w = (1,−1, 1,−1) satisfies
H1(w) = H2(w) = 0 and (∇H1)(w) = (∇H2)(w). In this example w is not even a
transverse multiple point! Such pathological points, if they exist, have lower height
than the singularities determining asymptotics and thus will not affect our methods.

Our first goal is to find the finite set of contributing singularities where a local
analysis of F gives diagonal asymptotics. Because we are considering the main diag-
onal direction, we begin by characterizing theminimal points of F (the elements ofV
coordinate-wise closest to the origin) that minimize the product |z1 · · · zdt |−1. The
general case will follow from a study of the singularities with positive coordinates.

Proposition 10.1 Let S ⊂ {−1, 0, 1}d be a weighted set of steps that is symmetric
over all but one axis and moves forwards and backwards in each coordinate. Then
|z1 · · · zdt |−1 is minimized at a unique minimal singularity of F(z) with positive
coordinates, equal to

p1 =

(
1, 1, . . . , 1,

√
B(1)
A(1)

,

√
A(1)/B(1)

2
√

A(1)B(1) +Q(1)

)
when the drift is negative, and

p2 =

(
1, 1, . . . , 1,

1
S(1)

)
otherwise.

Proof Because |z1 · · · zdt |−1 decreases as (z, t) moves away from the origin, any
minimizer among the minimal points of F must be an element ofV1 orV2. If

P1(z) = z1 · · · zd (zdB(ẑ) +Q(ẑ) + zdA(ẑ)) = z1 · · · zdS(z)

P2(z) = z1 · · · zd (Q(ẑ) + zdA(ẑ))

then the points in V1 and V2 are characterized by t = 1/P1(z) and t = 1/P2(z),
respectively. Since P1 and P2 are polynomials with positive coordinates, and the
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terms appearing in P2 are a strict subset of the terms appearing in P1, we see thatV2
contains no minimal points with positive coordinates (the value of t onV1 is always
less than the value of t onV2 when zwith positive coordinates is fixed). Furthermore,
increasing any coordinate of z ∈ Rd

>0 decreases the value of t = 1/P1(z), so the
minimal points ofV1 form the set

M =
{(

z, P1(z)−1
)

: z ∈ Rd>0 and zd ≤ 1
}
,

where the inequality on zd accounts for the factor H3 = 1 − zd .
In other words, we want to minimize |z1 · · · zdt |−1 for (z, t) ∈ M , which is equiv-

alent to minimizing |z1 · · · zdP1(z)| = S(z) over points with positive coordinates
where zd ≤ 1. Ignoring the constraint on zd , Proposition 4.5 of Chapter 4 implies
that S(z) has a unique minimizer with positive coordinates, given by the solution of

Sz1 (z) = · · · = Szd (z) = 0

with positive coordinates (as usual subscripted variables refer to partial derivatives).
Simplifying this system to(

1 − z2
1

) [
z−1
1

]
S(z) = · · · =

(
1 − z2

d−1

) [
z−1
d−1

]
S(z) = B(ẑ) − z2

dA(ẑ) = 0,

and noting that S has non-negative coefficients, we see that the desired minimizer
of S(z) is (1,

√
B(1)/A(1)). If the drift of themodel is positive or zero then B(1) ≤ A(1)

and we have shown that p1 is the unique minimizer of |z1 · · · zdt |−1 among the
minimal singularities of F with positive coordinates.

If the drift of the model is negative then B(1) > A(1), so p1 is not a minimal
point. In this case the desired minimizer of S(z) must occur when zd = 1 and ẑ
minimizes S(ẑ, 1) among points with positive coordinates. Once again invoking
Proposition 4.5 of Chapter 4, this time on S(ẑ, 1), shows that the minimizer occurs
when ẑ = 1. Thus, in the negative drift casep2 is the uniqueminimizer of |z1 · · · zdt |−1

among the minimal singularities of F with positive coordinates. �

Remark 10.2 The non-smooth point p2 is always a minimal point, but it is only
a minimizer of |z1 · · · zdt |−1 among the minimal points when the drift is negative
so that the smooth point p1 is non-minimal. In the zero drift case the points p1
and p2 coincide. Recall also Figures 9.3 and 9.4 in Chapter 9: although these figures
illustrate the singular sets of a different diagonal encoding of lattice path generating
functions, the pictures are similar to our situation.

One nice thing about the diagonal representation under consideration is that the
power series expansion of 1/H(z, t) is combinatorial, meaning the series coefficients
are all non-negative. Lemma 5.7 in Chapter 5 states that the minimal singularities
of a combinatorial series are characterized by the minimal singularities with pos-
itive real coordinates. Thus, we can extend Proposition 10.1 to obtain an explicit
classification of the singularities that dictate lattice path asymptotics. The formal



10.1 Mostly Symmetric Models in an Orthant 395

definitions of critical points and contributing singularities can be found in Chap-
ter 5 for smooth points and Chapter 9 for transverse multiple points; intuitively,
contributing singularities can simply be viewed as those where the local behaviour
of F determines asymptotics of its diagonal coefficient sequence. We always discuss
critical and contributing points with respect to the main diagonal direction r = 1.

Theorem 10.3 (mostly symmetric contributing points) Consider the lattice path
model defined by a weighted set of steps S ⊂ {−1, 0, 1}d that is symmetric over all
but one axis and moves forwards and backwards in each coordinate. Let D denote
the power series domain of convergence of F(z) and let p1 and p2 denote the points
from Proposition 10.1.

• If the drift of the model is negative then every point of V ∩ T(p1) is a minimal
smooth point and this set contains at most 2d+1 points, given by (ŵ,wd, t) where

ŵ ∈ {±1}d−1, wd = ν

√
B(ŵ)
A(ŵ)

, t =
1

wdS
(
ŵ,wd

) ,
|wd | =

√
B(1)
A(1)

, and |t | =

√
A(1)√

B(1) S
(
1,

√
A(1)/B(1)

) ,
with ν a fourth root of unity3. If wd is imaginary at such a point then ŵ has at least
one coordinate equal to −1. Each of these points is a smooth critical point. When
the drift of the model is negative then these points are contributing singularities
which form the minimizers of |z1 · · · zdt |−1 on D.

• Every point of V ∩ T(p2), which contains the elements of V with the same
coordinate-wise modulus as p2, is a transverse multiple point. The setV ∩T(p2)

contains at most 2d−1 critical points of F, given by the points (ŵ, 1, t) where

ŵ ∈ {±1}d−1, t =
1

w1 · · ·wd−1S
(
ŵ, 1

) , and |t | =
1

S(1, 1)
.

When the drift of the model is positive then each of these points is a contributing
singularity, and these points are the minimizers of |z1 · · · zdt |−1 on D.

• If the drift of the model is zero then p1 = p2 and every point of V ∩ T(p1) is a
transverse multiple point. Under this assumption of zero drift the set V ∩ T(p1)

contains at most 2d elements, given by the points (ŵ,wd, t) where

(ŵ,wd) ∈ {±1}d, t =
1

w1 · · ·wdS
(
ŵ,wd

) , and |t | =
1

S(1, 1)
,

and these points are the minimizers of |z1 · · · zdt |−1 on D.

3 In order to satisfy the condition on |t | it must be that B(ŵ)/A(ŵ) > 0, so the square root can be
taken unambiguously.
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Proof Suppose first that the drift is negative. Since 1/H(z, t) is combinatorial, Corol-
laries 5.4 and 5.5 from Chapter 5 imply the minimizers of |z1 · · · zdt |−1 on D will
be the points in V ∩ T(p1), and all these points are smooth critical points (and
thus also contributing points). If (w, s) ∈ V1 then s is uniquely determined by w
and if (w, s) has the same coordinate-wise modulus as p1 then S(w) = S(p̂1).
Because z1 · · · zdS(z) is a polynomial with nonnegative coefficients, and every coor-
dinate of p̂1 is positive, this equality implies every monomial of S(z) has the same
argument at z = w. Symmetry over the first d − 1 axes then implies w1, . . . ,wd−1
are real, and thus lie in {±1} as they have modulus one. Our condition that S moves
forwards and backwards in each coordinate then implies S(z) evaluated at z = w
contains two monomials of the form ±wd and ±w−1

d
, so wd is a fourth root of unity

with modulus
√

B(1)/A(1). The value of wd is non-real only if one of the coefficients
of the terms wd and w−1

d
is negative, meaning wk = −1 for at least one k , d.

The proof of Proposition 10.1 implies no point of T(p2) lies in V2, and the
gradients of H1 and H3 are non-zero and linearly-independent onV, so every point
ofV ∩ T(p2) is a transverse multiple point. An argument analogous to the negative
drift case shows that any point in V ∩ T(p2) satisfies ŵ ∈ {±1}d−1. Suppose now
that (w, tw) is one of the points in the statement of the theorem for the positive drift
case. If 1 ≤ k ≤ d − 1 then

wk(∂H1/∂zk)(w) = −tww1 · · ·wdS(w) − wk(tww1 · · ·wd)(∂S/∂zk)(w) = −1,

since tz1 · · · zdS(z) = 1 onV1 and (∂S/∂zk)(w) = 0 when wk ∈ {±1}. Similarly,

wd(∂H1/∂zd)(w) = −1−
A(w) − B(w)

S(w)
= −1−

A(1) − B(1)
S(1)

= −
2A(1) +Q(1)

A(1) +Q(1) + B(1)

since S(z) = zdA(ẑ)+Q(ẑ)+ zdB(ẑ) and our hypotheses imply A(w), B(w), and Q(w)
differ by positive real factors. Thus, when there is a positive drift

−(∇logH1)(w, tw) = (1, . . . , 1, r, 1) and − (∇logH3)(w, tw) = (0, . . . , 0, 1, 0)

for some 0 < r < 1, and (w, tw) is a contributing point. �

Having characterized the contributing singularities, we are now ready to deter-
mine asymptotics. In order to complete the necessary calculations we require some
additional notation.

Definition 10.2 For any 1 ≤ j ≤ d let ∂j denote the partial differential opera-
tor ∂/∂θ j . Furthermore, for any 1 ≤ k ≤ d − 1 define Bk and Qk as the unique
Laurent polynomials such that

S(z) = (zk + zk)Bk(zk̂) +Qk(zk̂), (10.5)

and let A′
k
, B′

k
, A′′

k
, B′′

k
be the unique Laurent polynomials such that
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A(ẑ) = (zk + zk)A′k(zk̂) + A′′j (zk̂)
B(ẑ) = (zk + zk)B′k(zk̂) + B′′j (zk̂).

To simplify notation we occasionally write Bk(p) for Bk(pk̂), understanding that the
kth entry of p should be removed, and similarly for A′

k
, B′

k
, A′′

k
, B′′

k
.

10.1.2 Asymptotics for Positive Drift Models

Asymptotics for the number of walks in a positive drift model follow directly from
Theorem 9.2 and Corollary 9.1 in Chapter 9, which describe the asymptotic contri-
butions of transverse multiple points. In particular, the numerator of our diagonal
expression vanishes at all contributing points except for p2 = (1, 1/S(1)), which is
thus the only contributing singularity affecting dominant asymptotics.

Proof (of Theorem 10.1) First, we note that

G(p2)

H2(p2)
= 2d−1 B(1) − A(1)

S(1)
S(1)
B(1)

= 2d−1
(
1 −

A(1)
B(1)

)
.

Next, the calculations in the proof of Theorem 10.3 imply that the matrix Γp2 in the
asymptotic expansion (9.7) given by Theorem 9.2 equals

Γp2 =

©«

−1 −1 −1 · · · −1 −r −1
0 0 0 · · · 0 −1 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · 1 0 0

ª®®®®®®®®®®¬
for a real number 0 < r < 1. Finally, to calculate the matrix Qp2 appearing in (9.7)

we parametrizeV1 ∩V3 by z1, . . . , zd−1 using zd = 1 and t =
(
z1 · · · zd−1S(ẑ, 1)

)−1
.

This implies Qp2 is the Hessian of the function

g(̂θ) = log
©«

1

ei(θ1+· · ·+θd−1)S
(
eîθ

) , 1ª®®¬ + log 1 = − log S
(
eîθ, 1

)
− i(θ1 + · · · + θd−1)

at the origin. We claim
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Qp2 =

©«

2B1(1)
S(1) 0 0 · · · 0

0 2B2(1)
S(1) 0 · · · 0

...
. . .

. . .
. . .

...

0 0
. . . 2Bd−2(1)

S(1) 0

0 0 · · · 0 2Bd−1(1)
S(1)

ª®®®®®®®®®®®®¬
,

so that substitution into the asymptotic expansion (9.7) of Theorem 9.2 gives Theo-
rem 10.1. To prove this claim let S̃(θ) = S(p2eiθ) and for 1 ≤ k ≤ d − 1 define

B̃(θ k̂) = Bk

(
pk̂eiθ k̂

)
and Q̃(θ k̂) = Qk

(
pk̂eiθ k̂

)
.

Writing S̃(θ) = (pkeiθk + pke−iθk )B̃(θ k̂) + Q̃(θ k̂) shows

(∂k S̃)(θ) = i(pkeiθk − pke−iθk )B̃(θ k̂)

and, since pk = pk under our assumptions, it follows that the partial derivatives of S̃
satisfy (∂k S̃)(0) = 0, (∂2

k
S̃)(0) = −2pkBk(pk̂), and (∂j∂k S̃)(0) = 0 whenever j , k.

Writing
S̃(θ) = pdeiθd A

(
p̂eîθ

)
+Q

(
p̂eîθ

)
+ pde−iθd B

(
p̂eîθ

)
,

partial derivatives involving θd follow from a similar argument. The chain rule then
expresses the partial derivatives of g in terms of the partial derivatives of S̃, giving
the claimed value of Qp2 and completing the argument. �

10.1.3 Asymptotics for Negative Drift Models

Asymptotics for the number of walks in a negative drift model are determined by
smoothminimal contributing singularities using Theorem 5.2 andCorollary 5.2 from
Chapter 5. Smoothness simplifies the analysis, but the leading term in the expansion
of Theorem 5.2 vanishes at all contributing points, meaning higher order constants
must be determined.

With this in mind, let W be the set of contributing points of V ∩ T(p1) for a
negative drift model, described in Theorem 10.3 above. For any p ∈ W we define
the functions ψp(θ) = − log S(p1eiθ1, . . . , pdeiθd ) + log S(p) + i(θ1 + · · · + θd) and

Pp(θ) = (1 + z1) · · · (1 + zd−1)

(
1 − z2

d

A(ẑ)
B(ẑ)

)
(1 − zd)−1

����
zk=pke

iθk , 1≤k≤d
.

A similar calculus computation to the positive drift case shows that the Hessian of
the function ψp at the origin is the non-singular matrix
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Hp =

©«

2p1B1(p)
S(p)

0 0 · · · 0

0 2p2B2(p)
S(p)

0 · · · 0

...
. . .

. . .
. . .

...

0 0
. . . 2pd−1Bd−1(p)

S(p)
0

0 0 · · · 0 2B(p̂)
pdS(p)

ª®®®®®®®®®®®®¬
.

Finally, for any N ∈ N define the somewhat cumbersome quantity

Φ
(p)
N (n) = S(p)n n−d/2 (2π)−d/2(detHp)

−1/2
N−1∑
k=0

C(p)
k

n−k, (10.6)

where

C(p)
k
=

2k∑̀
=0

Ek+l(Pp(θ) ψ̃p(θ)
`)

(−1)k2k+` l!(k + `)!

�����
θ=0

,

the function
ψ̃p(θ) = ψp(θ) − (1/2)θT · H · θ,

and E is the differential operator

E = −
S(p)

2

( ∑
1≤k<d

1
pkBk(pk̂)

∂2
k +

pd

B(p̂)
∂2
d

)
.

Corollary 5.2 from Chapter 5 states that for any N ∈ N the number of walks in the
orthant model defined by the characteristic polynomial S(z) satisfies

cn =
∑
p∈W

Φ
(p)
N (n) +O(n−N ).

To establish Theorem 10.2we need to determine the dominant non-zero terms in such
an expansion. This follows from some straightforward, but rather tedious, calculus
computations. For any fixed dimension these computations can be performed by a
computer algebra system.

Proof (of Theorem 10.2) Since Pp(0) = 0 for all p ∈ W , it follows that C(p)0 = 0 for
all p ∈ W . We thus determine which of the constants C(p)1 in the expansions (10.6)
are non-zero. For readability we suppress p in P and ψ̃. Because P vanishes at the
origin, and ψ̃ vanishes to third order at the origin, the sum for C(p)1 simplifies to

C(p)1 = −
1
2

(
E(P)(0) + E

2(P ψ̃)(0)
4

)
.

First, we evaluate E(P)(0). Let



400 10 Application: Lattice Paths, Revisited

X =
∏

1≤ j<d
(1 + pjeiθ j ), Y = 1 − p2

de2iθd
A

(
p̂eîθ

)
B

(
p̂eîθ

) , and Z =
1

1 − pdeiθd

so that P(θ) = XY Z , and

E(P)(0) = −S(p)
2

( ∑
1≤k<d

1
pkBk(pk̂)

(∂2
k XY Z)(0) + pd

B (p̂)
(∂2

dXY Z)(0)
)
.

For 1 ≤ k < d straightforward calculus computations show that Y and its first order
partial derivative with respect to θk vanish at the origin, so that

(∂2
k XY Z)(0) = X(0) (∂2

kY )(0) Z(0)

= −p2
d

∏
1≤ j<d(1 + pj)

1 − pd

(
−2A′

k
(p)B(p̂) + 2A(p̂)B′

k
(p)

)
B(p̂)2

= 2
B(p̂)
A(p̂)

∏
1≤ j<d(1 + pj)

1 − pd

[ A′
k
(p)B(p̂) − A(p̂)B′

k
(p)

B(p̂)2

]
=

2
∏

1≤ j<d(1 + pj)

1 − pd

[ A′
k
(p)

A(p̂)
−

B′
k
(p)

B(p̂)

]
.

Similarly, because X is independent of θd and Y (0) = 0,

(∂2
dXY Z)(0) = X(0) (∂2

dY )(0) Z(0) + 2X(0) (∂dY )(0) (∂dZ)(0) =
4
∏

j<d(1 + pj)

(1 − pd)
2 .

Combining these two expressions then yields

E(P)(0) =
−S(p)

∏
1≤ j<d (1 + p j )

2(1 − pd )


d−1∑
j=1

2
p jB j (p)

(
A′j (p)
A(p̂)

−
B′j (p)
B(p̂)

)
+

4pd

B(p̂)(1 − pd )

 .
To determine C(p)1 we must also calculate E2(P ψ̃)(0). The operator E2 is the

sum of operators of the form ∂2
j ∂

2
k
for 1 ≤ j ≤ k ≤ d. Differentiation shows

(∂3
j ψ̃)(0) = 0 so, since P vanishes at the origin, the non-zero terms of E2(P ψ̃)(0)

are those corresponding to the evaluations (∂dP)(0)(∂d∂2
j ψ̃)(0) for 1 ≤ j < d. More

differentiation gives

(∂dP)(0) = X(0)(∂dY )(0)Z(0) = −2i
∏

j<d(1 + pj)

1 − pd

and
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(∂d∂
2
j ψ̃)(0) = −

(∂d∂
2
j S)(p)

S(p)
=

2ipj

(
pdA′j(p) − p−1

d
B′j(p)

)
S(p)

.

Expanding E2 then gives

E2(P ψ̃)(0) =
4S(p)

∏
j<d(1 + pj)

pd(1 − pd)A(p̂)

d−1∑
i=1

pdA′j(p) − p−1
d

B′j(p)
Bj(p)

.

Finally, pulling everything together and simplifying using p2
d
= B(p̂)/A(p̂) gives

C(p)1 =
S(p)

∏
j<d(1 + pj)

1 − pd


1

A(p̂)pd(1 − pd)
+

d−1∑
j=1

1 − pj

2pjBj(p)

(
A′j(p)
A(p̂)

−
B′j(p)
B(p̂)

) .
We now see that the only values of p for which C(p)1 is non-zero are those where the
first d−1 coordinates equal one. The final coordinate pd can equal±

√
B(1)/A(1), but

Theorem 10.3 implies S(1, pd) = S(1) at any contributing point. If Q(ẑ) is identically
zero then S(ẑ,−zd) = −S(ẑ, zd) and both the positive and negative values of pd appear
in contributing points. If Q(ẑ) is not identically zero then only p2 = (1,

√
B(1)/A(1))

is a minimal contributing singularity. Summing the corresponding asymptotic con-
tributions and simplifying the resulting expression then gives Theorem 10.2. �

Remark 10.3 As described in Chapter 4, several approaches to walks in orthants were
originally motivated by conjectures of Bostan and Kauers [2] on asymptotics of two-
dimensional walks restricted to a quadrant (see Table 4.1 from Chapter 4). Four of
the twenty-three models arising in this context are highly-symmetric, while another
twelve are mostly symmetric (six having positive drift and six having negative drift).
Asymptotics of the highly symmetric models follow immediately from Theorem 6.1
in Chapter 6, while asymptotics of the mostly symmetric models are given by
Theorems 10.1 and 10.2. Six of the remaining sevenmodels have algebraic generating
functions, so that asymptotics can be determined using univariate techniques [4,
3]. The final two-dimensional quadrant models with short steps are discussed in
Problem 10.3.

The number of walks ending on one or more of the boundary axes of the first
orthant is also of combinatorial interest. Problem 10.1 asks you to determine a
diagonal expression forwalks returning to these boundary hyperplanes. Problem10.2
asks you to give asymptotics for the two-dimensional mostly symmetric models with
short steps returning to either or both axes.

10.2 Lattice Path Problems to Test Your Skills

We end by listing two other areas of lattice path enumeration where diagonal expres-
sions naturally occur. Asymptotic behaviour for a selection models that appear in
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these contexts is explored in Problems 10.4 to 10.7. There are countless opportuni-
ties to apply analytic combinatorics in several variables to lattice path enumeration
problems and we hope the reader, after making it through this text, is inspired to take
their newly developed skills and discover additional results in the area.

Central Weightings

Let S ⊂ Zd be a finite step set not contained in a half-space of Zd . A weighting
which assigns a positive weight ws > 0 to each s ∈ S is called central if the
weight of any path in Nd using the steps of S depends only on the length, start,
and end points of the path. Courtiel et al. [5] and Melczer [8, Ch. 11] investigate,
classify, and deduce asymptotics for centrally weighted models. Central weightings
are interesting from the point of view of analytic combinatorics in several variables
because uniform rational diagonal expressions can often be deduced for all central
weightings of a fixed step set, treating the weights as parameters. As the weights
vary, the contributing singularities and geometry of the singular variety at these
points change, resulting in interesting shifts between different asymptotic templates.
Problems 10.4 and 10.5 ask you to determine asymptotic behaviour for an important
family of central weightings.

Walks with Longer Steps

Bostan et al. [1] generalize aspects of the kernel method discussed in Chapter 4
to walks with steps whose coordinates have modulus larger than one. Although
this extension requires a more careful consideration of algebraic functions than the
kernel method for short step models, it still results in rational diagonal expressions
for several lattice path models restricted to the quadrant. Problems 10.6 and 10.7 ask
you to determine asymptotics for two such models.

Problems

10.1 Let V ⊂ {1, . . . , d}. If S ⊂ {±1, 0}d is a mostly symmetric step set that takes a
step forwards and backwards in each coordinate, prove that the generating function
enumerating walks on the steps in S which start at the origin and stay in Nd is the
main power series diagonal of the rational function

E(z, t) = G(z, t)
H(z, t)

∏
j∈V

(1 − zj) ,

where G and H are the functions in (10.4).
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S Return to x-axis Return to y-axis Return to origin
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Table 10.2 Asymptotics of quadrant walks with mostly symmetric step sets which end on the
x-axis, the y-axis, and the origin, respectively.

10.2 Use the diagonal expression in Problem 10.1 to prove the asymptotics for
two-dimensional models listed in Table 10.2, where the terms

δn =

{
1 : n ≡ 0 mod 2
0 : otherwise

σn =

{
1 : n ≡ 0 mod 3
0 : otherwise

εn =

{
1 : n ≡ 0 mod 4
0 : otherwise

and

γn =


448
√

2 : n ≡ 0 mod 4
640 : n ≡ 1 mod 4
416
√

2 : n ≡ 2 mod 4
512 : n ≡ 3 mod 4

account for periodicities in the lattice path models, and A, B, and C are given by

A = (156+41
√

6)
√

23 − 3
√

6, B = (583+138
√

6)
√

23 − 3
√

6, C = (4571+1856
√

6)
√

23 − 3
√

6.
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Hint:Most of the analysis from Theorem 10.3 can be reused. Under what conditions
are the contributing singularities for the diagonal expression encoding walks return-
ing to one or both axes the same as the contributing singularities for the diagonal
expression encoding walks ending anywhere in N2?

10.3 Quadrant models on the steps S = {(1, 0), (−1, 0), (−1, 1), (1,−1)} are named
after Gouyou-Beauchamps, who found [6] a hypergeometric formula for the number
of walks returning to an axis and proved [7] that walks in the model with various
restrictions are in bijection with several other combinatorial objects (for instance,
pairs of non-intersecting Dyck prefixes and Young tableaux of height at most four).
Let cn enumerate the number of lattice walks of length n taking steps in S, starting
at the origin, and staying in the first quadrant. Theorem 4.1 from Chapter 4 implies
that the generating function of cn+2 is the main power series diagonal of

F(x, y, t) =
yt2(x + 1)(y − x2)(x − y)(x + y)

1 − xyt(x + xy + yx + x)
.

Find dominant asymptotics of cn.

10.4 The characteristic polynomial for a centralweighting of theGouyou-Beauchamps
step set S = {(1, 0), (−1, 0), (−1, 1), (1,−1)} can be parametrized (up to a constant
multiple) as Sa,b(x, y) = 1

ax + ax + ax
by +

by
ax with a, b > 0. Using the kernel method

of Chapter 10, or other means, prove that the generating function enumerating the
number of weighted walks on S which start at the origin and stay in the quadrant N2

satisfies∑
n≥0

cn+2tn = ∆
(
yt2(y − b)(a − x)(a + x)(a2y − bx2)(ay − bx)(ay + bx)

a4b3(1 − t xySa,b(x, y))(1 − x)(1 − y)

)
.

10.5 Use the techniques of analytic combinatorics in several variables to determine
asymptotics for the rational diagonal of Problem 10.4 as a function of the positive
parameters a and b. As a and b vary, characterize the values where asymptotics
undergo a sharp transition.

10.6 Let S = {(1, 0), (−1, 0), (0,−1), (−2, 1)}. The generating function for the num-
ber cn of walks on S which use the steps in S, start at the origin, and stay in the
quadrant N2 satisfies∑

n≥0
cn+2tn = ∆

(
yt2(x2 + 1)(x2 + 2xy − 1)(2x3 + x2y − y)(x2 − y2)

(1 − x)(1 − y)(1 − t(x3 + x2y + xy2 + y))

)
.

Use the techniques of analytic combinatorics in several variables to prove

cn =
(2
√

3)n

πn4

(
Cn +O

(
1
n

))
,

where
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Cn =

{
5616
√

3 : n even
9720 : n odd

10.7 Let S = {(0, 1), (1,−1), (−1,−1), (−2, 1)}. The generating function for the num-
ber cn of walks on S which use the steps in S, start at the origin, and stay in the
quadrant N2 satisfies∑

n≥0
cn+2tn = ∆

(
yt2(2xy2 + x2 − 1)(x − y2)(x2y2 + 2x3 − y2)

(1 − x)(1 − y)(1 − t(x2y2 + x3 + y2 + x))

)
.

Use the techniques of analytic combinatorics in several variables to prove

cn =

(
8 3−3/4)n
πn4

(
Cn +O

(
1
n

))
,

where

Cn =


5120
√

3 : n ≡ 0 mod 4
6656 31/4 : n ≡ 1 mod 4
26624/3 : n ≡ 2 mod 4
3840 33/4 : n ≡ 3 mod 4
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