Example 3.24 (Apéry Numbers as Diagonals)
Requires BinomialSum package of Pierre Lairez, available at https://github.com/lairez/binomsums
| > | # Import package
with(BinomSums); |
| (1) |
| > | ##################
# zeta(3) sequence ################## |
| > | # The generating function for the binomial sum in Apéry's irrationality proof of zeta(3) is
GF_as_sum := Sum(t^n*Sum(Binomial(n,k)^2*Binomial(n+k,k)^2, k=0..n), n=0..infinity); |
![]() |
(2) |
| > | # The binomial sums package shows this is the "residue" of this rational function
R := subs(v[1]=x,v[2]=y,v[3]=z,[sumtores(GF_as_sum, v)][1]); |
| (3) |
| > | # This implies the GF is the main power series diagonal of this function
F := simplify(x*y*z*subs(t=x*y*z*t,R)); |
| (4) |
| > | # Beginning terms in the Apéry sequence
seq(coeff(coeff(coeff(coeff(mtaylor(F,[x,y,z,t],30),x,k),y,k),z,k),t,k),k=0..6); |
| (5) |
| > | ##################
# zeta(2) sequence ################## |
| > | # The generating function for the binomial sum in Apéry's irrationality proof of zeta(2) is
GF_as_sum2 := Sum(t^n*Sum(Binomial(n,k)^2*Binomial(n+k,k), k=0..n), n=0..infinity); |
![]() |
(6) |
| > | # The binomial sums package shows this is the "residue" of this rational function
R2 := subs(v[1]=x,v[2]=y,[sumtores(GF_as_sum2, v)][1]); |
| (7) |
| > | # This implies the GF is the main power series diagonal of this function
F2 := simplify(x*y*subs(t=x*y*t,R2)); |
| (8) |
| > | # Beginning terms in the second Apéry sequence
seq(coeff(coeff(coeff(mtaylor(F2,[x,y,t],20),x,k),y,k),t,k),k=0..6); |
| (9) |
| > |