Example3-24-AperyNumbersAsDiagonals.mw

Example 3.24 (Apéry Numbers as Diagonals) 

Requires BinomialSum package of Pierre Lairez, available at https://github.com/lairez/binomsums 

> # Import package
with(BinomSums);
 

[`BinomSums/version`, addnewgf, computesum, geomred, geomredall, hermitered, ratres, rser, sumtoct, sumtores] (1)
 

> ##################
# zeta(3) sequence
##################
 

> # The generating function for the binomial sum in Apéry's irrationality proof of zeta(3) is
GF_as_sum := Sum(t^n*Sum(Binomial(n,k)^2*Binomial(n+k,k)^2, k=0..n), n=0..infinity);
 

Typesetting:-mprintslash([GF_as_sum := Sum(`*`(`^`(t, n), `*`(Sum(`*`(`^`(Binomial(n, k), 2), `*`(`^`(Binomial(`+`(n, k), k), 2))), k = 0 .. n))), n = 0 .. infinity)], [Sum(`*`(`^`(t, n), `*`(Sum(`*`(... (2)
 

> # The binomial sums package shows this is the "residue" of this rational function
R := subs(v[1]=x,v[2]=y,v[3]=z,[sumtores(GF_as_sum, v)][1]);
 

Typesetting:-mprintslash([R := `+`(`-`(`/`(1, `*`(`+`(`*`(`+`(1, z), `*`(`+`(1, y), `*`(`+`(1, x), `*`(`+`(`*`(x, `*`(y, `*`(z))), `*`(y, `*`(z)), y, z, 1), `*`(t))))), `-`(`*`(x, `*`(y, `*`(z))))))))... (3)
 

> # This implies the GF is the main power series diagonal of this function
F := simplify(x*y*z*subs(t=x*y*z*t,R));
 

Typesetting:-mprintslash([F := `+`(`-`(`/`(1, `*`(`+`(`-`(1), `*`(`+`(1, x), `*`(`+`(1, y), `*`(`+`(`*`(`+`(1, `*`(`+`(1, x), `*`(z))), `*`(y)), z, 1), `*`(`+`(1, z), `*`(t))))))))))], [`+`(`-`(`/`(1,... (4)
 

> # Beginning terms in the Apéry sequence
seq(coeff(coeff(coeff(coeff(mtaylor(F,[x,y,z,t],30),x,k),y,k),z,k),t,k),k=0..6);
 

1, 5, 73, 1445, 33001, 819005, 21460825 (5)
 

> ##################
# zeta(2) sequence
##################
 

> # The generating function for the binomial sum in Apéry's irrationality proof of zeta(2) is
GF_as_sum2 := Sum(t^n*Sum(Binomial(n,k)^2*Binomial(n+k,k), k=0..n), n=0..infinity);
 

Typesetting:-mprintslash([GF_as_sum2 := Sum(`*`(`^`(t, n), `*`(Sum(`*`(`^`(Binomial(n, k), 2), `*`(Binomial(`+`(n, k), k))), k = 0 .. n))), n = 0 .. infinity)], [Sum(`*`(`^`(t, n), `*`(Sum(`*`(`^`(Bin... (6)
 

> # The binomial sums package shows this is the "residue" of this rational function
R2 := subs(v[1]=x,v[2]=y,[sumtores(GF_as_sum2, v)][1]);
 

Typesetting:-mprintslash([R2 := `+`(`-`(`/`(1, `*`(`+`(`*`(`+`(1, y), `*`(`+`(1, x), `*`(`+`(`*`(x, `*`(y)), y, 1), `*`(t)))), `-`(`*`(x, `*`(y))))))))], [`+`(`-`(`/`(1, `*`(`+`(`*`(`+`(1, y), `*`(`+`... (7)
 

> # This implies the GF is the main power series diagonal of this function
F2 := simplify(x*y*subs(t=x*y*t,R2));
 

Typesetting:-mprintslash([F2 := `+`(`-`(`/`(1, `*`(`+`(`-`(1), `*`(`+`(1, `*`(`+`(1, x), `*`(y))), `*`(`+`(1, x), `*`(`+`(1, y), `*`(t)))))))))], [`+`(`-`(`/`(1, `*`(`+`(`-`(1), `*`(`+`(1, `*`(`+`(1, ... (8)
 

> # Beginning terms in the second Apéry sequence
seq(coeff(coeff(coeff(mtaylor(F2,[x,y,t],20),x,k),y,k),t,k),k=0..6);
 

1, 3, 19, 147, 1251, 11253, 104959 (9)
 

>